
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 
 

 

MBA PROFESSIONAL REPORT 
 

 
A Model-Based Optimization 
Plan for the Naval Helicopter 

Training Program 
 

 
 

By:    Kyujin J. Choi, and 
  John D. Sowers 

June 2011 
 

Advisors: Uday Apte, 
John Khawam 

 
 
 
 
 
 

Approved for public release; distribution is unlimited 



THIS PAGE INTENTIONALLY LEFT BLANK 

 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2011 

3. REPORT TYPE AND DATES COVERED 
MBA Professional Report 

4. TITLE AND SUBTITLE   
A Model-Based Optimization Plan for the Naval Helicopter Training Program 

6. AUTHOR(S)  Kyujin J. Choi and John D. Sowers 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER   

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
  AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government.  IRB Protocol number N.A. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
FY2010 presented unique challenges to the Department of Defense and specifically in the Department of the Navy, 
with the call to ensure that a 1% to 3% real growth is realized through a “tail to tooth” reappropriation of future funds 
for the continuation of innovations and combat operations. The naval aviation training program, under the 
management of the Chief of Naval Air Training (CNATRA), is on the tail end of this analogy, indirectly supporting 
combat operations through the training of student naval aviators (SNAs) from the Navy, Marine Corps, and Coast 
Guard services with training offered for limited number of students from the Air Force and foreign nations. 

The purpose of this project is to model the naval aviation helicopter pilot training program as a supply chain 
with the output of one stage of production providing the input of the next.  Batch arrivals of selected naval aviators, 
pooling between stages, attritions, and squadron utilization rates combine to make this problem a complex model to 
quantify.  The proposed model accounts for above mentioned factors and is validated through historical data and 
allows hypothetical student pooling scenarios to be tested and analyzed. 
 

15. NUMBER OF 
PAGES  

105 

14. SUBJECT TERMS   
Naval Aviation Training, Helicopter Training, Supply Chain Management, Optimization, Manpower 
Planning, Modeling and Simulation 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 

 
 
 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

A MODEL-BASED OPTIMIZATION PLAN  
FOR THE NAVAL HELICOPTER TRAINING PROGRAM 

 
 

Kyujin J. Choi, Commander, United States Navy 
John D. Sowers, Commander, United States Navy 

 
 

Submitted in partial fulfillment of the requirements for the degree of 
 
 

MASTER OF BUSINESS ADMINISTRATION 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
June 2011 

 
 

 
 
Authors:  _____________________________________ 

Kyujin J. Choi 
 
 
   _____________________________________ 

John D. Sowers 
 
 
Approved by:  _____________________________________ 

Uday Apte, Lead Advisor 
 
 
   _____________________________________ 
   John Khawam, Support Advisor 
 
 
   _____________________________________ 
   William R. Gates, Dean 

Graduate School of Business and Public Policy 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

A MODEL-BASED OPTIMIZATION PLAN FOR  
THE NAVAL HELICOPTER TRAINING PROGRAM 

 
ABSTRACT 

 
 

 
FY2010 presented unique challenges to the Department of Defense and specifically in the 

Department of the Navy, with the call to ensure that a 1% to 3% real growth is realized 

through a “tail to tooth” reappropriation of future funds for the continuation of 

innovations and combat operations. The naval aviation training program, under the 

management of the Chief of Naval Air Training (CNATRA), is on the tail end of this 

analogy, indirectly supporting combat operations through the training of student naval 

aviators (SNAs) from the Navy, Marine Corps, and Coast Guard services with training 

offered for limited number of students from the Air Force and foreign nations. 

The purpose of this project is to model the naval aviation helicopter pilot training 

program as a supply chain with the output of one stage of production providing the input 

of the next.  Batch arrivals of selected naval aviators, pooling between stages, attritions, 

and squadron utilization rates combine to make this problem a complex model to 

quantify.  The proposed model accounts for above mentioned factors and is validated 

through historical data and allows hypothetical student pooling scenarios to be tested and 

analyzed. 
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I. INTRODUCTION  

A. BACKGROUND  

The history of the U.S. Navy is rich in tradition.  The Continental Navy was 

founded on Friday, October 13, 1775, which preceded the nation’s declaration of 

independence by nine months, with the decision to purchase and retrofit two sailing 

vessels (Love, 1992, p. 23).  Although this fledgling fleet did not directly challenge the 

British dominance of the seas, the Continental Navy conducted privateer operations to 

“raid commerce and attack the transports that supplied British forces in North America” 

(National History & History Command, 2010). 

Over one hundred and twenty years later, the Navy entered a new dimension of 

fighting.  The Department of Navy’s (DON) interests in aviation began in 1898, well 

before the first successful flight by Orville Wright at Kitty Hawk, NC in 1903.  Seven 

years later, in December 1910, LT Theodore Ellyson was assigned to North Island, CA, 

to train under the guidance of aviation pioneer Glenn Curtiss and, in 1911, would start a 

new phase in naval history as “Naval Aviator Number One” (California Military 

Museum, 2010). 

Since the birth of naval aviation, aircraft and techniques have become 

increasingly complex, thus requiring more in-depth training.  The Naval Aviation 

Training Command (NATC) was established to manage these various programs within a 

single command structure.  From naval aviation’s humble beginning with the training of a 

single student naval aviator (SNA), NATC, today, consists of the training of over 1,500 

Navy, Marine Corps and Coast Guard pilots and naval flight officers (NFOs) annually in 

addition to 155 Air Force pilots and more than 100 pilots and flight officers from 10 

allied countries of Italy, Norway, Germany, Spain, Denmark, Saudi Arabia, Brazil, 

France, Singapore and India (CNATRA, 2010).  Operating from five separate locations 

of NAS Pensacola, FL, NAS Whiting Field FL, NAS Meridian MS, NAS Corpus Christi  
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TX, and NAS Kingsville TX, the NATC, as a whole, can be considered a unique and 

complex, supply-chain consisting of five training air wings, 17 training squadrons, and 13 

aircraft models (CNATRA, 2010). 

B. PURPOSE 

FY2010 presented unique challenges to the Department of Defense (DoD), and 

specifically in the Department of the Navy (DON).  Growth of defense spending is not 

sustainable in times of recession and increasing national debt.  The Secretary of Defense 

(SECDEF), Robert Gates, gave specific direction to the DoD as a whole as it prepared for 

FY2012 budget.  In May 2010, the SECDEF directed the “military services, the Joint 

Staff, the major functional and regional commands, and the civilian side of the Pentagon 

to take a hard unsparing look at how they operate—in substance and style alike (Gates, 

2010).”  In this challenge, the line was drawn to realize a 1% to 3% real growth through a 

“tail to tooth” reappropriation of future funds for the continuation of innovations and 

combat operations.  SECDEF gave further direction on how to achieve this goal.  In the 

same speech, he stated, “the goal is to cut our overhead costs and to transfer those savings 

to force structure and modernization within the programmed budget” (Gates, 2010). 

Furthermore, “these savings must stem from root-and-branch changes that can be 

sustained and added to over time. Simply taking a few percent off the top of everything 

on a one-time basis will not do” (Gates, 2010). 

Doing more with less is not a sustainable business strategy.  However, identified 

cost savings may be found by recognizing inefficiencies within a system or a process.  By 

utilizing good business practices and applying them to military organizations, as 

applicable, such cost savings may be identified.  Among military organizations, the Naval 

Aviation Training Command (NATC), with one of its functions being to train student 

aviators and flight officers, can be framed using such business practices found in supply 

chain models. 
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C. RESEARCH OBJECTIVES 

The main research objective of this project is to build a model of the naval 

helicopter-training program as a type of supply-chain in order to identify and optimize 

overall training costs.  This will be accomplished through the following. 

 Formulation of a linear programming model of the naval aviation 
helicopter pilot training process 

 Validation of the resultant model 

 Utilization of the model to optimize the number of students entering the 
program and advancing to the next stage in training 

D. SCOPE 

The entirety of this program accounts for students from the Navy, Marine Corps, 

Air Force and Coast Guard, as well as students from 10 allied nations. Two programs 

exist, one for student pilots and one for student flight officers.  Navy and Marine Corps 

pilots are commonly referred to as Student Naval Aviators (SNAs) and flight officers 

referred to as Student Naval Flight Officers (SNFOs).  SNAs and SNFOs begin their 

aviation careers as newly appointed Ensigns (ENS) and Second Lieutenants (2LT) 

coming from various commissioning sources.   

Their aviation training begins with an Introductory Flight Screening (IFS) and 

Aviation Preflight Indoctrination (API).  Upon completion of these two programs, the 

SNAs and SNFOs split into separate training programs.  SNAs continue with primary 

training flying a common type/model aircraft of the T-34C.  Upon graduation of primary 

training, platform selection is determined and the SNAs split into one of five pipelines of 

intermediate jet, advanced E–6, advanced maritime, intermediate tilt-rotor and advanced 

rotary.  The intermediate jet pipeline is further split between the advanced Strike and 

E2/C2 at a later point to finish with a total of six separate pilot pipelines.  This process is 

depicted in Figure 1.  
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Figure 1.   Student Naval Aviator (SNA) Training Pipeline (From Chief Naval Air Training Command (CNATRA)) 
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Due to the complexity with the common phases with the SNA program involving 

six pipelines, in addition to the Naval Flight Officer (NFO) pipeline, the focus of this 

project has been narrowed specifically to that of the Navy and Marine Corps student 

naval aviators within the undergraduate naval helicopter-training program. Historically, 

this grouping represents the largest concentration in type of students within the overall 

aviation-training pipeline comprising, on average, 35.9% of the total student loading 

among the six pilot and one NFO pipelines, as depicted in Figure 2, Department of Navy 

Operation & Maintenance (O&M) budgetary data FY2001 through FY2010, (Assistant 

Secretary of the Navy, 2001–2010).  However, the resultant model constructed in this 

project can be easily adjusted, as necessary, to account for other services’ student aviators 

in different training pipelines. 

 

 

Figure 2.   Naval Aviation Training Historical Student Loads (From Assistant Secretary 
of the Navy, 2001–2010). 
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E. RESEARCH METHODOLOGY 

The helicopter-training pipeline can be framed in terms of a supply-chain model.  

Customers (i.e., operational fleet squadrons) project the future need for winged pilots 

qualified in a particular type/model of aircraft.  This request must be scheduled and 

appropriate steps taken approximately two years in advance, which is the average cycle 

time of the training process from beginning to the end.  

Upon receiving the order request of the customer, suppliers (i.e., commissioning 

sources) provide the necessary raw materials (i.e., student naval aviators).  This amount 

includes additional students required to compensate for projected attrition rates of 

students not completing the program due to either drop on requests (DORs) or failing 

grades.  Students that complete the undergraduate helicopter pilot training program are 

queued in “pools” throughout the pipeline.  This process consists of training stages to 

include the Introductory Flight Screening (IFS), Aviation Preflight Indoctrination (API), 

Primary Flight Training, and Advanced Rotary Flight Training.  Differing transfer costs 

exist between the stages depending on time spent in the queue and any necessary 

permanent change of station (PCS).  After graduating the undergraduate helicopter pilot 

training program, the newly winged pilots continue their training at the Fleet 

Replacement Squadrons (FRS).  The FRS will further customize the student helicopter 

pilots, training them in the particular type/model as originally requested by the fleet 

squadron.  FRS training is not covered within the scope of this paper. 

From this framing, a simple nine-stage linear programming model will be 

formulated using Microsoft Excel solver.  Decision variables will be based on the number 

of students entering the program at a particular time period, staying in the same stage 

from one period to the next, advancing through the program to the next stage or leaving 

the program through attrition. The objective function will be formulated to minimize 

costs throughout the entirety of the undergraduate helicopter-training program and 

constraints will be formulated to take into account fleet squadron demands, capacities of  
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the various phases, and the supply chaining of the student progression.  The model will 

be based on literature review of publications and procedures, historical data, and 

assumptions.  The overall research methodology consists of the following steps. 

 Conducting a literature review and collecting data in the form of historical 
reports, briefs and presentations 

 Defining the process of the naval helicopter training program through an 
examination of collected data and review of literature 

 Formulating a simple linear programming model on the naval 
undergraduate helicopter training process 

 Validating the model using real and hypothetical data 

 Utilizing the model to optimize the number of students entering the 
program and advancing to the next stage in training 

 Providing recommendations based on analysis of results of computational 
experimentation 

F. PROJECT ORGANIZATION 

The organization of the project is as follows. 

Chapter I both introduces the purpose and topic of the paper, giving the reader a 

brief background of the beginnings of the naval aviation-training program.  This chapter 

also presents the objectives of the paper and defines its scope. 

Chapter II describes the helicopter pilot training process, in detail, within the 

framework of a supply-chain model and calculates variable transfer costs, holding costs 

and training costs inherent in the system that are used in formulating the optimization 

model. 

Chapter III determines the decision variables that the model is required to solve, 

formulates an objective function to minimize overall program costs and states constraints 

necessary for the creation of a simple linear programming model.  Microsoft Excel will 

be utilized to construct a model based on these building blocks and previously calculated 

variable costs.   
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Chapter IV covers the conduct of computational experimentation.  Real and 

hypothetical data will be used to validate the model.  Various student-loading scenarios 

will be set up utilizing Microsoft Excel and simulated through multiple runs of each 

scenario using Microsoft Visual Basic.  Student loading scenarios will be balanced and 

analyzed against time and cost tradeoffs.  

Chapter V presents conclusions based on the modeling, simulation and analysis of 

the process.  Recommendations are presented that may be applied to future pilot training 

program execution strategies.  Areas requiring further studies on this subject will be 

identified. 
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II. NAVAL HELICOPTER PILOT TRAINING PROCESS 

A. BASIC SUPPLY CHAIN 

In this chapter, the helicopter pilot training process is described, in detail, within 

the framework of a supply chain model.  Supply chain management consists of five main 

decision areas (Vob & Woodruff, 2006, p. 4). 

1. Strategy  

2. Major Resources Capacity Planning 

3. Tactical Production Planning 

4. Scheduling 

5. Execution and Feedback  

This paper will focus on Tactical Production Planning, Scheduling and Execution 

and Feedback.  Strategy and Major Resources Capacity Planning involve long-range 

decision making, which falls outside the scope of this paper.  This model recognizes the 

entire helicopter pilot training process, from beginning to end, as a single unified 

production process where the output of one stage acts as the input to the next.  In the 

undergraduate helicopter supply chain, SNAs flow through nine different stages, 

achieving higher and higher levels of training. 

B. HELICOPTER PILOT TRAINING SUPPLY CHAIN 

As discussed in Chapter I, the majority of student naval aviators (SNAs) within 

the Navy’s pilot training program are in the helicopter-training pipeline.  The paper will 

briefly describe the fleet squadrons, commissioning sources and fleet replacement 

squadrons (FRS) roles within the overall supply chain.  However, the main focus of this 

paper will be on that of the undergraduate helicopter training program with students 

entering A-Pool at the beginning of the program and leaving E-Pool at the completion of 

the program.  This supply chain model is depicted in Figure 3. 
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Figure 3.   Helicopter Pilot Training Supply Chain (From Chief, Naval Air Training 
(CNATRA)) 

By describing the helicopter pilot training as a supply chain it can be used as a 

management tool to meet customer demands.  Meeting customer demand is a priority, but 

it must be achieved by the most efficient means while meeting minimum helicopter pilot 
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qualification requirements.  At any time when demand is increased in the supply chain 

and additional resources are not added to the production process, the queue times will 

increase, unless there is a lowering of quality.  As a result, this may lead to additional 

cost to the government in the future due to under qualified pilots in the operational 

squadrons. 

In the situation where there is a sudden increase in the demand for helicopter 

pilots, the quick answer is not to arbitrarily add SNA at the beginning of the training 

process or lower the qualification requirements.  Managers can review their helicopter 

pilot training supply chain to analyze the holding pools to see if they have enough safety 

stock and if the training stages have enough resources to meet the increased demand 

without the addition of resources.  

The helicopter training supply chain is a PROCESS built on four unique STAGES 

that include Initial Flight Screening (IFS), Aviation Preflight Indoctrination (API), 

Primary Flight Training and Advanced Helicopter Training.  The STAGES are then 

divided into specific training PHASES that are tailored to each STAGES’ syllabus.  

PHASES consist of individual ACTIVITIES, such as a flight, simulator event or an 

academic class.  An example of a simplified two-stage process is depicted in Figure 4. 

 

 

Figure 4.   Process Components 
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The helicopter pilot training phase uses flexible scheduling to reduce time to train.  

Flexible scheduling is a means to plan phases to overcome unknown variables, such as 

weather, maintenance and other factors that cannot be anticipated.  Due to these 

unknowns affecting scheduling of various phases, a generic schedule of the four stages is 

built based on the syllabus of each stage.   

Program costs associated with this process are calculated based on composite 

costs of personnel and cost per flight hour of associated training.  Costs associated with 

management of the squadron are considered sunk costs; this includes instructors, facilities 

and basic administration.  Costs of cockpit procedure trainers (CPTs) and simulators 

(SIM) are part of the pilot training syllabus under the management of Raytheon, a civilian 

contractor, are also considered sunk costs.  Any attrition is assumed to occur at the end of 

the particular stage with costs calculated as if the student completed the entire stage.  

However, Drop on Requests (DORs) from students that choose voluntarily to end training 

and Flight Failures (FF) from failures of academics, ground events or flight events may 

occur in any phase of training.  Costs associated with student attrition affect costs per 

student as a whole.   

1. Stage 12:  Fleet Squadrons (Customers) 

The helicopter pilot supply chain begins and ends with the operational fleet 

squadrons.  Pilots qualified in a particular type/model aircraft (i.e., finished products) are 

requested approximately two years in advance by the various fleet squadrons (i.e., 

customers).  These dates are based on departure or “rotation” dates of pilots within the 

fleet squadrons who depart to continue their progression through the aviation career 

track.  From this initial request, the number of students required in the training program 

are scheduled and documented within the Department of the Navy Operations & 

Maintenance (O&M) future budgets.  This process acts to reduce the bull-whip effect 

through direct communications resulting in a typical push-pull supply chain model.   

Changes in requests from the time an order is placed to the time of delivery 

results in either cutting back the number of students initially assigned to the naval 
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aviation training program or through the increase of attrition rates for a specific stage.  

Attritions due to changes in policy are usually made early in the training program to 

minimize costs of training.  This was seen in FY2005, when retiring of aircraft platforms 

from the naval inventory resulted in the training program attrition rates of Aviation 

Preflight Indoctrination (API) from 2% to 50% (Assistant Secretary of the Navy, 2001–

2010).  While allowing fleet squadrons to maintain the required number of pilots, had the 

added benefit in that, it resulted in an increase of attrition rates early in the program 

resulted in a reduction of attrition rates later in the training pipeline with student attrition 

rates for naval helicopter pilots dropping to 0.5 percent. Historical attrition rates for the 

naval aviation-training program, of which the helicopter-training pipeline is a subset, are 

depicted in Figure 5, Department of Navy Operation & Maintenance (O&M) budgetary 

data FY2001 through FY2010 (Assistant Secretary of the Navy, 2001–2010). 

 

 

Figure 5.   Naval Aviation Training Historical Attrition Rates (From Assistant 
Secretary of the Navy, 2001–2010) 

2. Stage 0:  Commissioning Sources (Suppliers) 

The commissioning sources consisting of the United States Naval Academy 

(USNA), Naval Reserve Officer Training Corps (NROTC) and Officer Candidate School 
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(OCS) provide the students (i.e., raw materials) to the helicopter pilot training program.  

At the commissioning source, control systems are established to screen applicants based 

on minimum acceptable levels of vision, academic grade point average (GPA) and the 

Aviation Test Selection Battery (ATSB).  Students are commissioned as Naval or Marine 

Corps Officers after graduation or completion of OCS.  NROTC and USNA students 

graduate in two main batches, the primary batch occurring in the summer and the 

secondary batch occurring in the winter.  OCS class completion occurs throughout the 

year.  The number of students provided by the various commissioning source for the 

flight-training program include additional students necessary to adjust for projected 

attrition rates based on historical numbers.  Historical numbers of student aviators 

assigned to and completing the helicopter pilot training program are depicted in Figure 6, 

Department of Navy Operation & Maintenance (O&M) budgetary data FY2001 through 

FY2010 (Assistant Secretary of the Navy, 2001–2010). 

 

 

Figure 6.   Naval Helicopter Pilot Training Student Completion (From Assistant 
Secretary of the Navy, 2001–2010) 
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3. Stage 1:  A-Pool 

After commissioning, Navy Ensigns (ENS) arrive at NAS Pensacola and enter the 

first of many queues awaiting the start of IFS training.  The first queue is named, “A-

Pool.”  Marine Corps Second Lieutenants (2LT) first attend “The Basic School” (TBS) at 

Marine Corps Base (MCB) Quantico, VA for six months prior to starting A-Pool.  

Permanent changes of station (PCS) costs for moving students from the various 

commissioning sources and TBS to NAS Pensacola to begin the helicopter pilot training 

program are considered sunk costs. Moves from commissioning sources to the first duty 

station occur regardless of designator.  Daily holding costs of personnel assigned to A-

Pool are calculated in Table 10 found in Appendix A.  This results in a biweekly variable 

cost of $2,605 for students held in A-Pool. 

4. Stage 2:  Introductory Flight Screening (IFS) 

The IFS stage was included in 2003 as an extra stage in the naval aviation training 

program to insert an additional management control system.  IFS was designed to reduce 

overall attrition rates due to Drop on Requests (DOR) and Flight Failures (FF) occurring 

later in the program by identifying early SNAs and SNFOs who lack determination, 

motivation and aeronautical adaptability required to succeed in later stages of flight 

(OPNAV, 2003, p. 1).  The IFS stage of training is conducted at one of five select civilian 

flight schools among four airports in the Pensacola area to include the airports of 

Pensacola, Milton, Gulf Shores and Mobile. The IFS stage begins with completion of 

prerequisites necessary to begin training.  These prerequisites include medical physicals 

to ensure physical standards are met for both the Naval Operational Medical Institute 

(NOMI), as well as Federal Aviation Administration (FAA) regulations to determine any 

condition that may preclude the start of flight training.  Required military specific 

physical fitness assessments and swim qualifications are also validated and 

anthropometric checks are conducted to ensure that the student will fit properly in the 

cockpit, dependent on the type of aircraft that is used.  These prerequisites are 

accomplished during A-Pool.   
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IFS pilot training is built upon the Jeppesen Private Pilot Syllabus, considered the 

standard of private pilot courses in civilian flight training (CNATRA, 2007, p. 5).  This 

syllabus consists of three ground school stages and two flight phases resulting in 25 hours 

of flight time (CNATRA, 2007, p. 16).  To maximize the value of each flight hour, a 

minimum of 30 minutes for prebrief and 30 minutes for postbrief shall be provided on all 

flights (20 hours total) (CNATRA, 2007, p. 9).  Table 13 found in Appendix B depicts 

the IFS pilot training syllabus.  SNAs are mandated to complete IFS training within 50 

calendar days of the date of registration (CNATRA, 2007, p. 11).  Average program cost 

for IFS training is $3,760.  It is calculated from flight school training costs depicted in 

Table 1 and syllabus events contained in Table 13 Appendix B.  SNAs must successfully 

pass the Jeppesen Stage exams and the FAA written exam with at least a grade of 80% 

and must solo within 15 flights (CNATRA, 2007, p. 14). At program completion, 24 to 

25 flight hours are completed within the 50 days of enrollment (i.e., four time periods) 

(CNATRA, 2007, p. 14).  Attrition within the program has historically been 4.5% due to 

DOR and FF (E. Lashua, personal communication, January 18, 2011).   

 

Table 1.   Training Costs:  Introductory Flight Screening (IFS) (From AMS Aviation 
at http://www.flymilton.com; Pensacola Aviation at 
http://www.pensacolaaviation.com; Ferguson Aviation Academy at 
http://www.fergusonairport.com; Flight Training Mobile at 
http://www.flyftm.com 

Item / Training Gulf Shores Milton Mobile Pensacola 

Flight Equipment & Headset $400 $400 $400 $400

Ground Instruction $30 8* $50 $30

Preflight / Postflight Instruction $30 $35 $50 $30

Aircraft Rental $115 $99 $130 $145

Flight Instruction $30 $30 $50 $30

Check Flights $30 $30 $55 $30

* Students conducting flight training in Milton are charged fixed fee of $250 for 30 
  hours of ground training. 

 

Program costs include equipment, ground instruction and flight instruction. SNAs 

are required to fly in the most economical aircraft (CNATRA, 2007, p. 8).  In Pensacola, 
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these rental rates are listed for fueled aircraft and vary among flight schools.  Personnel 

holding costs are also relevant in this program and are similar to the rates of A-Pool.  

Composite holding costs are calculated in Table 13 in Appendix A and is calculated 

resulting in a biweekly variable holding cost of $2,605.  

5. Stage 3:  B-Pool 

Upon completion of IFS training, all students remain at Pensacola, FL and enter 

the next queue, B-Pool, while awaiting the next stage of training, API.  Costs associated 

with this pool are comprised solely of personnel costs as shown in Table 13 in Appendix 

A.  This results in a biweekly variable cost of $2,605 for each student held in B-Pool. 

 

6. Stage 4:  Aviation Preflight Indoctrination (API) 

API is a course under the Naval Aviation Schools Command (NASC) Aviation 

Training School (ATS) department, consisting of three phases: 1) Administration (week 

0); 2) Academic ground school teaching the basics of aerodynamics weather, navigation, 

engines, flight rules and regulations and water survival (weeks 1–4); and 3) NOMI 

training involving additional water survival, altitude chamber, emergency aircraft egress 

training, and physiology (weeks 5–6) encompassing seven weeks (i.e., four time periods) 

(Dixey, 2006. pp. 12–17).  Training costs for this stage is considered a sunk cost due to 

its fixed nature.  The variable costs per student associated with this program are 

comprised of composite personnel holding costs as calculated in Table 10 in Appendix A.  

This results in a calculated biweekly holding cost for each student of $2,605.  Attrition 

within the program is historically 3.3% due to DORs and academic failures (E. Lashua, 

personal communication, January 18, 2011).   
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7. Stage 5:  C-Pool 

There are five primary training squadrons, three at NAS Whiting Field, FL and 

two at NAS Corpus Christi, TX.  This requires 40% of the students to transfer and 

conduct a permanent change of station (PCS) move to NAS Corpus Christi.  The 

remaining 60% of the students stay in the Pensacola area and transfer to NAS Whiting 

Field, which does not require a PCS move.   

PCS moves are inherently costly to the aviation-training program in terms of time 

and money.  Many variables go into the calculation of PCS costs.  Students are allowed 

up to 10,000 pounds of HHG with an average being 5,000 lbs.  Distance is also a factor 

with the distance between NAS Pensacola and NAS Corpus Christi approximately 760 

miles with associated cost per mile.  Distance is also a major factor determining the 

number of days spent on the road while calculating per diem rates to cover food and 

lodging while traveling.  For example, the distance of 760 miles between NAS Pensacola 

and NAS Corpus Christi is divided by the standard traveling distance per day to arrive at 

2.17, which is rounded to two days.  This number is then multiplied by the per diem rate 

per day. Once arriving at the new duty station of NAS Corpus Christi, students are 

eligible to receive 10 days of house hunting leave to find and set up their house prior to 

checking-into their primary squadron.  During this time, the students receive Temporary 

Lodging Expense (TLE) of $180 per day for a maximum of 10 days of house hunting 

leave.  These costs are depicted in Table 9 of Appendix A resulting in a total cost to 

transfer a student of $10,040.  This cost, spread across all students in the program results 

in an overall cost per student within the training program of $4,020. 
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Table 2.   Transfer Costs:  NAS Pensacola to NAS Corpus Christi (From Chief of 
Naval Air Training (CNATRA) Instruction 3501.1B Introductory Flight 
Screening (IFS) Program; Navy Times Pay charts at 
http://www.navytimes.com/money/pay_charts/, December 2010. 

Transfer Costs   
NAS Pensacola -> NAS Corpus Christi) 

Unit 
Cost 

Units Total 

- HHG Weight (lbs.) $1 5,000 $5,000

- Distance Traveled (miles) $.25 760 $190

- Per Diem (days) $140 2 $280

- Temporary Lodging Expense (days) $180 10 $1,800

- House Hunting Leave (days) $90 10 $900

Dislocation Allowance $1,320 1 $1,320

Fly Pay* $0 10 $0

Retired Pay Accrual $30 10 $300

Medicare-Eligible Retiree Health Care Accrual $25 10 $250

Total Average Transfer Cost per Student     $10,040

*Note:  SNA fly pay starts during primary stage of training 
 

 

Once PCS transfer is complete and students check into a primary squadron, 

holding costs apply as students await the start of the next stage of training.  Differences in 

Basic Allowance for Housing (BAH) rates between students at NAS Whiting Field and 

NAS Corpus Christi are accounted.  The composite cost to hold students in C-Pool is 

calculated in Table 10 of Appendix A.  This results in an average biweekly cost of 

$2,685. 

8. Stage 6:  Primary Flight Training 

Primary pilot training is flown in the T-34C and is divided into four phases.  

Phases are grouped by like flight training events, such as contact, instrument, navigation 

and formation.  The average time to train is 127 training days for students assigned to 

squadrons at NAS Corpus Christi and 131 training days for students assigned to NAS 

Whiting Field (CNATRA, 2009, p. vii).  Flights are primarily scheduled five days a 

week, Monday through Friday.  Therefore, the expected total time to complete the 

program is 177 calendar days for students assigned to NAS Corpus Christi and 183  
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calendar days for students assigned to NAS Whiting Field (i.e., 13 time periods).  

Composite personnel holding costs associated with this time to train are depicted in Table 

10 Appendix A and are calculated resulting in a biweekly cost of $2,740. 

Variable training costs based on cost per flight hour also must be taken into 

consideration.  Flight hours are based on actual syllabus flight time allotted.  Instructional 

time may vary +/- .3 hours per flight without explanation.  Therefore, total time to train 

may range from 75.9 hours to 102.2 hours (CNATRA, 2009, p. x).  Calculations in this 

paper will utilize average time to train of 89.0 hours as assigned in the flight syllabus.  

An overview of the flight syllabus is depicted in Table 12 in Appendix B.  Students 

undergoing primary pilot training fly in the T-34C “Mentor” aircraft with FY2010 cost 

per flight hour determined to be $348 (E. Lashua, personal communication, January 18, 

2011).  This results in a training cost per student of $30,972 based on the syllabus flight 

hours.  Cockpit Procedures Trainer (CPT) and Simulators (SIM) are synthetic trainers of 

the cockpit environment and are considered sunk costs. 

Attritions from this phase of the program are historically 8.0% and are assumed to 

occur at the end of the program (E. Lashua, personal communication, January 18, 2011).  

At the completion of the primary flight program, students are assigned one of the five 

platforms—jet, E-6, maritime, tilt-rotor or rotary types of aircraft—that they will fly 

throughout their naval career. 

9. Stage 7:  D-Pool 

D-Pool is similar to C-Pool containing both transfer costs and holding costs.  

Transfer costs of students moving from squadrons located at NAS Corpus Christi, TX to 

NAS Whiting Field, FL is $10,690 per student transferred or $4,275 spread among all 

students.   
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Table 3.   Transfer Costs:  NAS Corpus Christi to NAS Whiting Field (From Chief of 
Naval Air Training (CNATRA) Instruction 3501.1B Introductory Flight 
Screening (IFS) Program; Navy Times Pay charts at 
http://www.navytimes.com/money/pay_charts/, December 2010. 

Transfer Costs 
(NAS Corpus Christi -> NAS Whiting Field) 

Unit 
Cost 

Units Total 

- HHG Weight (lbs.) $1 5,000 $5,000

- Distance Traveled (miles) $0 780 $780

- Per Diem (days) $150 2 $300

- Temporary Lodging Expense (days) $180 10 $1,800

- House Hunting Leave (days) $90 10 $900

Dislocation Allowance $1,320 1 $1,320

Fly Pay $4 10 $40

Retired Pay Accrual $30 10 $300

Medicare-Eligible Retiree Health Care Accrual $25 10 $250

Total Average Transfer Cost per Student     $10,690

 

The composite cost to hold students in D-Pool is calculated in Table 10 of 

Appendix A.  This results in an average biweekly cost of $2,660. 

10. Stage 8:  Advanced Rotary Flight Training 

Advanced helicopter pilot training is flown in two models of the TH-57 training 

helicopter, the basic model (TH-57B) and the instrument rated model (TH-57C).  This 

stage is divided into five phases, contact, instrument, navigation and formation, and 

tactical.  Overall time to train is 133 training days or 205 calendar days (i.e., 15 time 

periods) (CNATRA, 2009, p. vii).  Flights are primarily scheduled five days a week, 

Monday through Friday, although flights may be scheduled on Sunday for recovering 

cross country flights.  Composite personnel holding costs associated with this time to 

train (TTT) are depicted in Table 10 in Appendix B. This results in an average biweekly 

cost of $2,660. 

Cost per flight hour also must be taken into consideration.  Average cost per flight 

hour for the TH-57 is calculated at $525.  Flight hours are based on actual syllabus 

scheduled time allotted.  Instructional time may vary +/- 0.3 hours per flight.  Therefore, 
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total time to train will range from 102.7 hours to 123.1 hours (CNATRA, 2009, p. ix).  

Deviation in excess of this range must be documented with reasons why.  Calculations in 

this paper will utilize average time to train of 112.9 hours as assigned in the primary 

flight syllabus.  This syllabus is described in Table 15 in Appendix B.  This results in the 

training cost per student of $59,273 based on the syllabus flight hours.  CPT and SIM are 

synthetic trainers of the cockpit environment.  Costs associated with these events are set 

under contract with Raytheon and are considered sunk costs.  Attritions from this phase 

of the program are on average 7.4% based on historical data and are assumed to occur at 

the end of the program (E. Lashua, personal communication, January 18, 2011).  At the 

completion of the Advanced Helicopter Flight Training stage, students enter E-Pool 

awaiting their winging ceremony. 

11. Stage 9:  E-Pool 

The winging ceremony is the graduation from the aviation helicopter pilot 

training.  This pool is included in the supply-chain model because queues are built up 

waiting for the ceremony to occur.  Winging ceremonies take place every two weeks with 

minimum time waiting in the queue of 0 days for students just finishing their last flight 

the day prior to those that just missed the cut off from the prior ceremony and must wait 

the entire 14 days.  Average time spent in the queue, therefore, is calculated at seven 

days.  Composite personnel costs for time spent in this queue are shown in Table 11 in 

Appendix A.  This results in an average biweekly cost of $2,660. 

12. Stages 10/11:  F-Pool / Fleet Replacement Squadrons (FRS) 

Upon completion of the undergraduate flight training, the newly designated naval 

pilots enter another pool to await the start of the FRS.  In the FRS, the newly winged 

naval pilots undergo further customization training in the particular type/model of aircraft 

they will fly in the fleet before final delivery to the fleet squadrons that had originally 

ordered the student.  At the fleet squadron, the supply-chain management continues with  
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the ordering of future placements as discussed in previous sections. These activities 

occurring after completion of the undergraduate training program fall outside the scope of 

this study and are not discussed in detail.   

C. COMPOSITE COSTS 

These calculated costs for each stage, transfer costs (CXTRs), holding costs 

(CHLDs) and training costs (CTRNs) are holding costs for each stage (CHLDs)are 

depicted in Figure 2 and are used in Chapter III building the model. 

 

Table 4.   Helicopter Training Program Variable Costs per Time Period 

Stage 
Time 

Period 
Transfer 
(CXFRs) 

Hold 
(CHLDs) 

Train 
(CTRNs) 

1.  A-Pool N/A $0 $2,605  $0  

2.  Introductory Flight Screening (IFS)     4 $0 $2,605  $3,760  

3.  B-Pool N/A $0 $2,605  $0  

4.  Aviation Preflight Indoctrination (API)     4 $0 $2,605  $0  

5.  C-Pool N/A $4,020 $2,685  $0  
6.  Primary Flight Training    13 $0 $2740 $30,972  
7.  D-Pool N/A $4,275 $2,660  $0  

8.  Advanced Rotary Flight Training    15 $0 $2,660  $59,273  

9.  E-Pool N/A $0 $2,660  $0  
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III. OPTIMIZATION MODEL 

Utilizing the transfer, training and holding composite costs calculated in Chapter 

II and introducing a penalty cost for over and under production, a simple linear 

programming model is formulated to determine the SNA training rate, as well as SNA 

loads and wait times in the various stages of the undergraduate training program.  SNAs 

are tracked throughout the program in specific time buckets or periods.  These periods are 

determined to be equivalent to fourteen days based on the scheduling of biweekly 

graduation of newly winged pilots.  Notation for the variables used throughout the formal 

model is explained in Table 5. 

 

Table 5.   Notation for Helicopter Pilot Training Manpower System 

 
 

APIp(t) Number of SNAs progressing through API during time segment p  in 
time period t for p = {1, 2, 3, 4, 5}; t = {1, 2, …, 52} 

ADVp(t) Number of SNAs progressing through Advanced Rotary Flight Training 
during time segment p in time period t for p = {1, 2, 3, 4, 5}; t = {1, 2, 
…, 52} 

βs(t) Number of SNAs in stage s at time period t that are solved to advance 
to the next stage in the next time period for each s = {0, 2, 4, 6, 8}; t = 
{0, 1, …, 52} βs(t) for s = {1, 3, 5, 7, 9}, while not decision variables, 
are intermediate  

 variables used to track students through the system. 

CHLDs Cost to hold SNAs during stage s for each s = {1, 2, …, 9} 

CTRNs Cost to train SNAs during stage s for each s = {1, 2, …, 9} 

CXFRs  Cost to transfer SNAs during stage s for each s = {1, 2, …, 9} 

Dy
+(t) Overproduction of SNAs during year y and time period t for y = {1, 2}; 

t = {0, 1, …, 52}   

Dy
-(t) Underproduction of SNAs during year y and time period t for y = {1, 

2}; t = {0, 1, …, 52}   



 
 

26

 

A. INPUTS 

The required number of pilots within fleet squadrons is constrained regardless of 

conditions of peacetime, contingencies or wartime, by required minimum training levels, 

as well as number of aircraft and ship platform types from which to deploy.  Military 

planners receive demands for fill vacancies of qualified pilots departing the fleet 

squadrons and progress along the aviation career track.  Production requirements for the 

undergraduate training program varies only slightly between biweekly time periods 

utilized by the mode and is approximately spread evenly throughout the year in an 

attempt to retain corporate knowledge within the different communities. Historically 

variations of the fleet demands can be determined utilizing Navy budgetary data, as 

depicted in Figure 7.   

 
 
 
 

αs(t) Number of SNAs in stage s at time period t that enter into stage s at time 
period t for each s = {0, 2, 4, 6, 8}; t = {0, 1, …, 52}.   

δs Average attrition rate for all SNAs at the completion of stage s for each s = {1, 
2, …, 9} 

IFSp(t) Number of SNAs progressing through IFS during segment p in time period t 
for p = {1, 2, 3, 4, 5}; t = {1, 2, …, 52} 

MAXs Maximum number of SNAs able to be produced during stage s due to capacity 
for each s = {1, 2, …, 9} 

MINs Minimum number of SNAs required to be produced during stage s to maintain 
flow of supply chain for each s = {1, 2, …, 9} 

PRIp( PRIp(t) Number of SNAs progressing through Primary Flight Training during  
segment p in time period t for p = {1, 2, 3, 4, 5}; t = {1, 2, …, 52} 

Ps(t) The observed number of SNAs during stage s in time period t for each s = {0, 
1, …, 12}; t = {0, 1, …, 52} 

PEN Penalty cost for over and under production taken at the end of each FY.  
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Figure 7.   Helicopter Training Program Outputs (From Department of Navy Operation 
& Maintenance (O&M) Budgetary Data FY1998 through FY2010) 

Taking the standard deviation of the past decade results in a standard deviation of 

approximately 2.0 for each of biweekly time periods.  However, this is considered high 

given the changes both in naval operational tempo (OPTEMPO) and within the aviation 

community in the past decade.  A more accurate standard deviation is calculated using a 

weighted moving average with recent years weighted higher than more distant years. A 

calculated number results in a value of approximately 0.50 for each of the biweekly time 

periods and is the value utilized for the model.  

Using Microsoft Excel’s function of Random Number Generator, variability in 

the number of required pilots can be introduced into the model.  Excel’s Random Number 

Generator function can be found under Data Analysis and Random Number Generation, 

as depicted in Figure 8 and Figure 9.  Given a normal distribution, mean, and standard 

deviation, numbers are generated for 115 inputs representing 15 periods prior to the start 

of the model, 52 periods of the model, and 100 periods after the model ends.  The pre and 

posttime periods are a necessary part of the model to determine predefined starting 

inventory and rates, as well as postdefined rates upon which the model calls.   
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Figure 8.   Data Analysis Tools 

 

Figure 9.   Random Number Generation 

B. MODEL 

The model worksheet contains user-defined inputs based on historical data 

affecting each stage to include minimum demands to ensure proper flow within the 

training program, attrition rates for the various training stages, and constraints.  The 

linear programming model consists of 52 biweekly periods covering a 2-year period.  In 

this model, there are 264 decision variables and 1,303 constraints that exceed the 

capabilities of Microsoft Excel Solver.  Therefore, Frontline’s Risk Solver Premium 10.0 

is used to solve the model. 
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1. Decision Variables 

There are three types of decision variables used in the objective function of this 

model, βs(t), Dy
+(t) and Dy

-(t ).  The decision of the flight program manager to remove 

SNAs from one of the various pools when s = {1, 3, 5, 7, 9}) at a specific time period, t, 

within the training program to meet demand of the next stage of the process is captured 

within the variable βs(t).  During actual training stages when s = {0, 2, 4, 6, 8}, students 

are tracked through the specific stage.  Completion of this training stage requires no 

decision with SNAs automatically entering the next pooling state. 

The decision variables, Dy
+(t) and Dy

-(t), are included in the model to ensure 

linearity is maintained in adding a fourth cost into the objective function, a penalty cost.  

This penalty is used as an incentive to meet SNA training goals and is incurred at the end 

of a fiscal year, when t = {26, 52}.  This penalty is not calculated on a biweekly basis, 

thus allowing output of the program to fluctuate with squadrons over and under 

producing at the end of each biweekly period without incurring a penalty.  

2. Objective Function 

The objective function in this model will be constructed to minimize overall costs 

of the helicopter pilot training program for a two-year time period.  SNAs entering the 

program from the commissioning sources at various times are represented by β0(t).  Once 

in the program, the number of SNAs leaving one stage in time period t for the next phase 

are represented by βs(t).  Both β0(t), for students assigned prior to the start of the 

program, and βs(t), representing students within the different stages and time periods of 

the program, are calculated through the simulation of the model.  Students within the 

program incur a cost to hold, train and transfer. These costs are explained in depth in 

Chapter II and are summarized in Table 4.  Given these costs, the objective function can 

be written as follows. 
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Minimize Overall Variable Costs = 

 

       9    52             2 

min [ Σ  Σ (CXFRs + CTRNs) * βs-1(t-1) + CHLDs * Ps(t)]] + Σ PEN * (Dy
+ + Dy

-) 
      s = 1  t = 1            y = 1 

This can be expanded to be written as: 

 

Minimize Overall Variable Costs = 

 
  52         52    52  

min [ $1,303 * Σ P1(t) + $3,760 * Σ β1(t-1) + $1303 * Σ P2(t) 
      t = 1        t = 1        t = 1 

 

 

         A-Pool   IFS 

  52            52  

+ $1,303 * Σ P3(t) + $1,303 * Σ P4(t) 
 t = 1       t = 1     

 
        B-Pool   API  
 
 
 
  52        52    52    52  

+ $4,020 * Σ β4(t-1) + $1,346 * Σ P5(t) + $30,972 * Σ β5(t-1) + $1,370 * Σ P6(t) 
 t = 1         t = 1       t = 1    t = 1 

 

 

     C-Pool     Primary Flight Training 

 

  52        52    52    52  

+ $4,275 * Σ β6(t-1) + $1,330 * Σ P7(t) + $59,273 * Σ β7(t-1) + $1,330 * Σ P8(t) 
 t = 1         t = 1       t = 1    t = 1 

 

 

     D-Pool Advanced Rotary Flight Training 
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   52            2            

+ $1,330 * Σ P9(t) +  Σ (50,000 * Dy
+ + $50,000 * Dy

- )] 

     t = 1       y = 1      
 

 
    E-Pool          Over/Under Production Penalty   

3. Constraints 

a. Predefined Starting and Ending Rates and Inventories 

Given the demands for qualified pilots, the number of SNAs entering the 

program starting each of the training stages can be determined.  Attrition rates, based on 

historical data, are taken into account to ensure adequate number of students begin the 

training program at the right time period.  This number of students is calculated by the 

model and can be described entering the program, as described in Table 6. 

 

Table 6.   SNA Calculated Demand by Stage  

s Attrition Input Rate Output Rate

12 δ12 α12 = β12 / (1‐δ12) β12

11 δ11 α11 = β11 / (1‐δ11) β11 = α12

10 δ10 α10 = β10 / (1‐δ10) β10 = α11

9 δ9 α9 = β9 / (1‐δ19) β9 = α10

8 δ8 α8 = β8 / (1‐δ8) β8 = α9

7 δ7 α7 = β7 / (1‐δ7) β7= α8

6 δ6 α6 = β6 / (1‐δ6) β6 = α7

5 δ5 α5 = β5 / (1‐δ5) β5= α6

4 δ4 α4 = β4 / (1‐δ4) β4 = α5

3 δ3 α3 = β3/ (1‐δ3) β3 = α4

2 δ2 α2 = β2 / (1‐δ2) β2= α3

1 δ1 α1 = β1 / (1‐δ1) β1 = α2

0 ‐‐‐ α0 = β0 / (1‐δ0) β0 = α1

A‐Pool

Commissioning Source

D‐Pool

Primary Flight Training

C‐Pool

API

B‐Pool

IFS

Stage

Fleet Squadron

FRS

F‐Pool

E‐Pool

Advanced Rotary Flight Training

 
 

Table 6 is also utilized to approximate a predefined initial rate and 

inventory levels of SNAs within the program prior to the start of the model during time 

periods t = {-14, -13, …, 0}, as well as postending rates after model completion during 

time periods t = {53, 54, …, 100} 
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b. Commissioning Sources 

Calculation of the number of SNAs required to enter the program can be 

determined utilizing Table 3.  However, this is complicated with the arrival of students 

around two main periods during the year.  The commissioning sources provide SNAs to 

the undergraduate training program in two batches after graduation following the spring 

and fall periods.  The constraint-limiting students to arrive in these two batches can be 

written as: 

 

β0(t) = 0 for t ≠ {6, 19, 32, 45}. 

 

c. A-Pool 

Within A-Pool, SNA loading during a specific time period must follow 

standard supply chain rules with inputs equal to outputs (i.e., students cannot be created 

nor destroyed, they can only be progressed, retained, or attrited).  This supply-chain for 

A-Pool can be written as: 

 

P1(t) = P1(t-1) + β0(t) – β1(t)  for t = {1, 2, …, 52}. 

 

Fluctuations of the number of SNAs held within A-Pool are allowed and are expected as 

a result of the batching of SNAs entering the program, therefore, no restriction are 

imposed on the baseline model as to the minimum or maximum levels of SNAs held as 

safety stock. 

d. Introductory Flight Screening (IFS) 

The IFS training stage is conducted over a time period of 50 days, which 

equates to approximately four time periods.  SNAs are tracked through this stage until 

completion.  Therefore, with inputs equal to outputs, the number of students exiting the 

program either by completion or attrition equals the number of students entering the IFS 

stage from A-Pool four periods prior.  This can be written as: 
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β2(t) = β1(t-3) * (1-δ2)  for t  = {1, 2, …, 52}. 

 

Likewise, the SNA load, or number of SNAs, within the IFS stage is the summation of 

the number of students within the four time periods.  This can be written as:  

 

P2(t) = β1(t) + β1(t-1) + β1(t-2) + β1(t-3)  for  t  = {1, 2, …, 52}. 

 

Minimum SNA demand is a required constraint for each of the training 

stages to ensure proper flow through the entirety of the supply chain.  Without this 

constraint, student flow continues until fleet demand is achieved for the 52 biweekly 

periods; however, once achieved, all training stops throughout the entire undergraduate 

helicopter training program supply chain.  This, while optimal for the time period t =1, 2, 

…, 52}, is not optimal for future periods.  Therefore, a constraint must also be written to 

ensure minimum flow within the supply chain is maintained. This constraint can be 

written as: 

 

α2(t) ≥ MIN2  =  [ Σ β1(t) / 52 ] for t = {1, 2, …, 52}. 

 

Capacity is another constraint of the each of the training stages.  There are 

five civilian flight schools supporting IFS training located in the Pensacola area, two in 

Pensacola, one Milton, one in Gulf Shores, and one in Mobile (CNATRA, 2010).  

Among these five schools, there are approximately 40 flight instructors (K. Coleman, 

personal communication, January 7, 2011).  In accordance with Federal Aviation 

Regulations, civilian flight instructors are limited to a maximum of eight hours of 

instructional flights per 24-hour period, which equates to approximately four flights per 

day for the Jeppesen civilian flight syllabus (FAA, 2011).  There are 23 instructional and 

two noninstructional (i.e., solo) flights contained in the IFS syllabus (CNATRA, 2007, p. 

9).  The IFS constraint is the total students produced biweekly.  During the IFS stage, 

future helicopter students make up 35.9% of the total number of IFS flight students  
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(Assistant Secretary of the Navy, 2001–2010).  IFS start dates are on an as required basis, 

dependent on individual SNAs schedules.  Therefore, the capacity constraint can be 

written as: 

β2(t) ≤ MAX2 for t = {1, 2, …, 52} 

 

with MAX2 calculated as: 

 

MAX2 = (40 CFIs * (4 instructional flights / 23 student flights) * 14 days) 
               * .359 future helicopter students per total IFS students 

 

MAX2 = 34.96 future helicopter students completed weekly. 

e. B-Pool 

Within B-Pool, SNA loading during a specific time period must follow 

standard supply chain rules with inputs equal to outputs.  This supply-chain for B-Pool 

can be written as: 

P3(t) = P3(t-1) + β2(t) – β3(t)  for t = {1, 2, …, 52}. 

 

As with A-Pool, some fluctuations of the number of SNAs held within B-Pool are 

allowed and are expected as a result of batching of SNAs entering the program.  

Therefore, no restrictions are imposed as to the minimum or maximum levels of SNAs 

held as safety stock in the baseline model. 

f. Aviation Preflight Indoctrination (API) 

The API training stage is conducted over a time period of seven weeks, 

which is approximately four time periods.  SNAs are tracked through this stage until 

completion.  Therefore, with inputs equal to outputs, the number of students exiting the 

program either by completion or attrition equals the number of students entering the API 

stage from B-Pool four periods prior. This can be written as: 
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β4(t) = β3(t-3) * (1-δ4)  for t  = {1, 2, …, 52}. 

Likewise, the SNA load, or number of SNAs, within the API stage is the summation of 

the number of students within the four time periods.  This can be written as:  

 

P4(t) = β3(t) + β3(t-1) + β3(t-2) + β3(t-3) for t  = {1, 2, …, 52}. 

    

As with IFS training, minimum SNA demand is a required constraint for 

each of the training stages to ensure proper flow through the entirety of the supply chain.  

This constraint can be written as: 

 

α4(t) ≥ MIN4  =  [ Σ β3(t) / 52 ] for t = {1, 2, …, 52}. 

 

Pure ground instructional stages, such as API, are limited by classroom size. Maximum 

class size for this stage is limited to 50 students (E. Lashua, personal communication, 

January 18, 2011).  Of the total number of students, the number of future helicopter 

students makes up 35.9% of the total (Assistant Secretary of the Navy, 2001–2010).  API 

start dates are on a weekly schedule (Bostick & Booth, 2005, p. 20).  Therefore, the 

capacity constraint can be written as: 

 

Β4(t) ≤ MAX4 for each t = {1, 2, …, 52} 

 

with MAX4 calculated as: 

 

MAX4 = (50 API students per class) * .359 future helicopter pilots per  
                 total students * 2 classes per two-week time period 

MAX4 = 35.9 future helicopter pilots completed biweekly. 
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g. C-Pool 

Within C-Pool, SNA loading during a specific time period must follow 

standard supply chain rules with inputs equal to outputs.  This supply-chain for C-Pool 

can be written as: 

 

P5(t) = P5(t-1) + β4(t) – β5(t)  for t = {1, 2, …, 52}. 

 

Unlike the previous two pools, in C-Pool, an additional constraint must be 

introduced to ensure adequate numbers of SNAs are maintained within the pool as safety 

stock to protect the system from rapid and unplanned surges in demands.  The more 

variability within the system, the more safety stock is required to be held.  For C-Pool, 

with two groupings of SNAs unselected in platform type training at different locations, 

variability within this pool is greater than in D-Pool or E-Pool.  Based on current data, the 

size of C-Pool was approximated and can be written as: 

 

P5(t) ≥  3*MIN5  = 3 * [ Σ α5(t) / 52 ] for t = {1, 2, …, 52}. 

 

h. Primary Flight Training 

The Primary Flight Training stage is conducted over a time period of 180 

days, which equates to approximately 13 time periods.  SNAs are tracked through this 

stage until completion.  Therefore, with inputs equal to outputs, the number of students 

exiting the program either by completion or attrition equals the number of students 

entering the Primary Flight stage from C-Pool 13 periods prior. This can be written as: 

 

β6(t) = β5(t-12) * (1- δ6). 

 

Likewise, the SNA load, or number of SNAs, within the Primary Flight stage is the 

summation of the number of students within the 13 time periods.  This can be written as:  
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P6(t) = β5(t) + β5(t-1) + β5(t-2) + β5(t-3) + β5(t-4) + β5(t-5) + β5(t-6)  
+ β5(t-7) + β5(t-8) + β5(t-9) + β5(t-10) + β5(t-11) + β5(t-12)  
for t  = {1, 2, …, 52}. 

 

As with other training stages, minimum SNA demand is a required 

constraint for each of the training stages to ensure proper flow through the entirety of the 

supply chain.  This constraint can be written as: 

 

α6(t) ≥ MIN6  =  [ Σ β5(t) / 52 ] for t = {1, 2, …, 52}. 
    

There are five primary training squadrons, three at NAS Whiting Field, FL 

and two at NAS Corpus Christi, TX (CNATRA, 2010).  Among these five squadrons, 

there are approximately 56 active duty flight instructors per squadron.  Pilot training rate 

during the primary stage is determined through the number of resources available (i.e., 

squadrons and instructors).  Maximum instructor flight time is governed through the 

OPNAV instruction 3710.7U (p. 8–17) and the each training wing instruction, such as 

COMTRAWINGFIVE Instruction 3710.2T (p. 1–3), depicted in Table 7. 

 

Table 7.   Primary Flight Training Flight Hour Limitations (From OPNAVINST 
3710.7U, COMTRAWINGFIVEINST 3710.2T) 

  Time Period 

Governing Instruction Daily Weekly Monthly Quarterly Yearly 

OPNAV 3710.7 6.5 hours 30 hours 65 hours 165 hours 595 hours 

COMTRAWINGFIVEINST 3710.2T 12 hours 50 hours 100 hours 265 hours 960 hours 

 

Flight hour waivers may be granted on a case-by-case basis to exceed 

OPNAV 3710.7U limits for single-piloted (i.e., instructor-student) aircraft in accordance 

to the Fixed-Wing SOP (p. 23), but are on a case-by-case basis to meet operational 

requirements.  These waivers are highly dependent on flight instructor personal goals, 

which limit maximum flight hours flown to 595 without waivers up to 960 hours with 

waivers.  Percentages of instructors on waivers that are used for this model are estimated 

to be approximately 25% of total number of instructors.  Included in the flight hours are 
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both syllabus (i.e., instructor-student flights) and nonsyllabus (i.e., maintenance and 

instructor-instructor) flights.  A ratio of 6.5 syllabus hours to eight total hours are 

estimated (81.3%) of flights are considered syllabus supporting flight hours.  This results 

in a maximum of 483 syllabus flight hours per year per instructor.  There are 80.6 

instructional and 8.4 noninstructional (i.e., solo) flights contained in the primary flight 

syllabus (CNATRA, 2009, p. x).  During this stage, future helicopter students make up 

41.3% of the total number of total flight students (Assistant Secretary of the Navy, 2001–

2010).  Primary start dates are on a biweekly schedule (Bostick & Booth, 2005, p. 20).  

Therefore, the capacity constraint can be written as: 

 

Β6(t) ≤ MAX6 for each t = {1, 2, …, 52}. 

 

with MAX6 calculated as: 

MAX6 = [.75*(280 active duty instructors) * (483 flight hours per year) +  
                .25*  (280 active duty instructors) * (780 flight hours per year)] /  
                 80.6 student instructional hours) / 26 periods per year] * .413  
                 helicopter students per total primary students 

 
MAX6 = 30.75 future helicopter students completed biweekly. 

However, as mentioned previously, the maximum capacity of students in this stage is 

calculated assuming only 25% of the flight instructors are on waivers.  In times of high 

OPTEMPO, this may be as high as 43.04 future helicopter pilots completed on a 

biweekly basis if all flight instructors are granted flight hour waivers to exceed 

OPNAVINST 3710.7U limitations. 

i. D-Pool 

Within D-Pool, SNA loading during a specific time period must follow 

standard supply chain rules with inputs equal to outputs.  This supply-chain for D-Pool 

can be written as: 
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P7(t) = P7(t-1) + β6(t) – β7(t)  for t = {1, 2, …, 52}. 

 

As with C-Pool, an additional constraint must be introduced to ensure 

adequate numbers of SNAs are maintained within the pool as safety stock that protects 

the system from rapid and unplanned surges in demands.  For D-Pool, with SNAs 

entering the pool from two different locations, there is less variability than in C-Pool but 

more variation than E-Pool.  Based on current data, the size of D-Pool is approximated 

and written as: 

 

P7(t) ≥  2*MIN7  = 2 * [ Σ α7(t) / 52 ] for t = {1, 2, …, 52}. 

 

j. Advanced Rotary Flight Training 

The Advanced Rotary Flight Training stage is conducted over a time 

period of 205 days, approximately 15 time periods.  SNAs are tracked through this stage 

until completion.  Therefore, with inputs equal to outputs, the number of students exiting 

the program either by completion or attrition equals the number of students entering the 

Primary Flight stage from C-Pool 15 periods prior. This can be written as: 

 

β8(t) = β7(t-14) * (1- δ8). 

 
Likewise, the SNA load, or number of SNAs, within the Advanced Rotary Flight stage is 

the summation of the number of students within the 15 time periods.  This can be written 

as:  

 

P8(t) = β7(t) + β7(t-1) + β7(t-2) + β7(t-3) + β7(t-4) + β7(t-5) + β7(t-6)  

+ β7(t-7) + β7(t-8) + β7(t-9) + β7(t-10) + β7(t-11) + β7(t-12)  

+ β7(t-13) + β7(t-14). 
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As with other training stages, minimum SNA demand is a required 

constraint for each of the training stages to ensure proper flow through the entirety of the 

supply chain.  This constraint can be written as: 

 

α8(t) ≥ MIN8  =  [ Σ β7(t) / 52 ] for t = {1, 2, …, 52}. 

 

Within the Advanced Rotary Flight Training, maximum capacity of the 

stage is determined through the number of resources available (i.e., squadrons and 

instructors).  There are three advanced rotary training squadrons at NAS Whiting Field, 

FL (CNATRA, 2010).  Among these three squadrons, there are approximately 56 active 

duty flight instructors per squadron normally flying on a daily basis and 10 reserve flight 

instructors per squadron flying as required to maintain minimum reserve time 

requirements (A. Petrosino, personal communication, January 7, 2011).  As with primary 

flight training, the maximum instructor flight time during this phase is limited by 

OPNAV Instruction 3710.7U (p. 8–17) and the Training Wing Five Instruction 3710.8Q 

(p. 1–3), as depicted in Table 8. 

 

Table 8.   Advanced Rotary Flight Training Flight Hour Limitations (From 
OPNAVINST 3710.7U, COMTRAWINGFIVEINST 3710.2T 

  Time Period 

Governing Instruction Daily Weekly Monthly Quarterly Yearly 

OPNAV 3710.7 6.5 hours 30 hours 65 hours 165 hours 595 hours 

COMTRAWINGFIVEINST 3710.8Q 8 hours 50 hours 100 hours 265 hours 960 hours 

 

As with Primary Flight Training, flight hour waivers may be granted on a 

case-by-case basis to exceed OPNAV 3710.7U limits for single-piloted (i.e., instructor-

student) aircraft in accordance to the Fixed-Wing SOP (p. 23), but are on a case-by-case 

basis to meet operational requirements.  These waivers are highly dependent on flight 

instructor personal goals, which limit maximum flight hours flown to 595 without 

waivers up to 960 hours with waivers.  Percentages of instructors on waivers that are used 
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for this model are estimated to be approximately 25% of total number of instructors.  

Included in the flight hours are both syllabus (i.e., instructor-student flights) and 

nonsyllabus (i.e., maintenance and instructor-instructor) flights.  A ratio of 6.5 syllabus 

hours to eight total hours are estimated (81.3%) of flights are considered syllabus 

supporting flight hours.  This results in a maximum of 483 syllabus flight hours per year 

per instructor.  There are 108.2 instructional and 4.7 noninstructional (i.e., solo) flights 

contained in the primary flight syllabus (CNATRA, 2009, p. ix).  During this stage, 

helicopter students make up 96.6% of the total number of total rotary wing flight students 

(Assistant Secretary of the Navy, 2001–2010).  Advanced rotary wing training start dates 

are on a biweekly schedule (Bostick& Booth, 2005, p. 20).  Therefore, this constraint can 

be written as:  

 

Β8(t) ≤ MAX8 for each t = {1, 2, …, 52} 

 

with MAX6 calculated as: 

 
MAX8 = [(.75*168 active duty instructors + 30 reserve instructors*  
  38/365 reserve time ratio) * (483 flight hours per year) + (.25*  
  (168 active duty instructors)*(780 Flight Hours per Year)] /  
  108.2 student instructional hours) / 26 periods per year] * .966  
  helicopter students per total rotary students 

 
MAX8 = 32.67 helicopter students completed biweekly. 

  

However, the capacity of the Advanced Rotary Flight stage may be as high as 45.83 

helicopter pilots completed on a biweekly basis if all flight instructors are granted flight 

hour waivers to exceed OPNAVINST 3710.7U limitations. 

k. E-Pool 

Within E-Pool, SNA loading during a specific time period must follow 

standard supply chain rules with inputs equal to outputs.  This supply-chain for E-Pool 

can be written as: 
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P9(t) = P9(t-1) + β8(t) – β9(t)  for t = {1, 2, …, 52}. 

 

As with C-Pool and D-Pool, an additional constraint must be introduced to ensure 

adequate numbers of SNAs are maintained within the pool as safety stock that protects 

the system from rapid and unplanned surges in demands.  For E-Pool, with SNAs 

preparing to leave the undergraduate training program for follow on training in the FRS, 

there is less variability than in either C-Pool or D-Pool.  The size of E-Pool was 

approximated and written as: 

 

P9(t) ≥  MIN9  = [ Σ α9(t) / 52 ] for t = {1, 2, …, 52}. 

 

C. OUTPUTS 

During the running of this model, 26 separate worksheets are provided in which to 

copy and paste data, as depicted in Figure 10.  
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Figure 10.   Worksheet Relationship Schematic 

Each worksheet is named for contents that it holds.  These worksheets include 

Commissioning Rate, A-Pool Rate, A-Pool Load, IFS Rate, IFS Load, B-Pool Rate, B-

Pool Load, API Rate, API Load, C-Pool Rate, C-Pool Load, Primary Rate, Primary 

Load, D-Pool Rate, D-Pool Load, Advanced Rate, Advanced Load, E-Pool Rate, E-Pool 

Load, Wait Time Training, Wait Time Pools, Wait Time Total, Costs, Costs per SNA, and 

Service Rate.  From these tables, various charts are automatically calculated and are 

contained in a single worksheet named Charts.   
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IV. COMPUTATIONAL EXPERIMENT AND RESULTS 

This chapter provides the information required to setup and run the computational 

experiment within Microsoft Excel, as well as an interpretation of the results.  The initial 

model developed will be used as a basis to which to compare alternate models, as 

discussed in Chapter V.   

A. SIMULATION INPUTS 

The baseline model is developed to account for a simulated number of required 

qualified fleet pilots throughout a broad spectrum of SNAs ranging from zero up to and 

including the capacity of the system.  Variability of the fleet demands within each 

scenario are taken into account, as described in Chapter III, with 50 simulation iterations 

for each mean number of SNAs ranging from 0 to 27.  Microsoft Excel’s random number 

generator function, shown in Figure 10, is again used multiple times to simulate 

fluctuations of fleet demand throughout the 52 biweekly periods (i.e., two years).   

 

 

Figure 11.   Fleet Demand Simulation Using Random Number Generation 

Standard deviation was assumed to be 0.5, as described in Chapter III based on a 

mean approximately equal to 22 in accordance with historical data.  Using this as the 

basis, the coefficient of variation (CV) was calculated by dividing standard deviation by  
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the mean, resulting in a CV of 0.0227.  Setting this CV as a constant, the standard 

deviations of the other mean level of fleet demands were calculated, as depicted in Table 

9.     

 

Table 9.   Fleet Demand Mean and Standard Deviation 

Row # Mean Std Dev CV Row # Mean Std Dev CV Row # Mean Std Dev CV

1 to 50 0.00 0.00 0.02 501 to 550 10.00 0.23 0.02 1001 to 1050 20.00 0.45 0.02

51 to 100 1.00 0.02 0.02 551 to 600 11.00 0.25 0.02 1051 to 1100 21.00 0.48 0.02

101 to 150 2.00 0.05 0.02 601 to 650 12.00 0.27 0.02 1101 to 1150 22.00 0.50 0.02

151 to 200 3.00 0.07 0.02 651 to 700 13.00 0.30 0.02 1151 to 1200 23.00 0.52 0.02

201 to 250 4.00 0.09 0.02 701 to 750 14.00 0.32 0.02 1201 to 1250 24.00 0.55 0.02

251 to 300 5.00 0.11 0.02 751 to 800 15.00 0.34 0.02 1251 to 1300 25.00 0.57 0.02

301 to 350 6.00 0.14 0.02 801 to 850 16.00 0.36 0.02 1301 to 1350 26.00 0.59 0.02

351 to 400 7.00 0.16 0.02 851 to 900 17.00 0.39 0.02 1351 to 1400 27.00 0.61 0.02

401 to 450 8.00 0.18 0.02 901 to 950 18.00 0.41 0.02

451 to 500 9.00 0.20 0.02 951 to 1000 19.00 0.43 0.02  
 

From these actions, a 115 x 1400 table consisting of 161,000 data points with a 

minimum value of zero and maximum value of 27.61 and having a mean of 13.50 and 

standard deviation of 8.1 is created within the Inputs worksheet containing different 

simulated scenario inputs within the model ranging from zero up to and including 27.5, 

the capacity of the system as modeled.  The resultant simulated fleet demand is depicted 

in Figure 12.  

 

Figure 12.   Fleet Demand 
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B. COMPUTATIONAL EXPERIMENTATION 

With the creation of the model in Chapter III and the table of simulated demands, 

computational experimentation is next.  Rather than manually set up the scenario, solve, 

and record the data for each of the 1,400 simulated runs, an additional tool is necessary.  

Macros within the Microsoft Excel program can perform these tedious operations and are 

accessible on the ribbon of selections under the View tab. 

 
 

 

Figure 13.   Accessing Microsoft Excel Macros 

Within the Model worksheet, macros were recorded using the macros drop down 

menu and utilizing the Record Macro function.  All operations for an entire simulation 

cycle, from copying and pasting of the simulated fleet demand, running solver and 

copying and pasting the results into the various output worksheets listed in Chapter III, 

were then executed.  Steps within this macro consisted of three main phases. 

 Inputs regarding simulated fleet demands were copied from the Inputs 
worksheet and pasted into the Model worksheet 

 Risk Solver Premium v10.0 was executed 

 Data was copied from numerous cells within the Model worksheet and 
pasted in the tables located in the various output worksheets 

After stopping the recording of the macro, the macro was edited to ensure proper 

execution over multiple simulation iterations.  A variable designated Counter was 

included to track simulation iteration, which was used to offset rows and columns when 

cutting and pasting during the execution of the macro.   

Through the combination of hardware and software described in Chapter III, 

solving the optimization model for each scenario took approximately 15 seconds.  The 

average uninterrupted run time for the 1400 simulations required approximately nine  
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hours and 30 minutes.  After the full run of the simulation, various tables were 

automatically populated and graphs were created depicting the nine stages modeled 

within the undergraduate helicopter-training program.  

C. RESULTS 

General activities within each stage of the two-year time period are described 

covering the entire range of mean number of pilots demanded by the fleet squadrons from 

zero to 27, the capacity of the system as calculated in Chapter III.  However, while it is 

best to plan ahead two years in advance, unexpected increases and decreases in student 

requirements may occur within this two-year training cycle.  For example, increasing the 

number of pilots required from 22 to 23 at the end of the first fiscal year results in the 

normal batch size associated with 22 requested pilots and a first batch size of 347 

students.  However, the second batch within the first fiscal year then increases to 354 as 

the model anticipates the future increased demand.  This batching stabilizes at the third 

and fourth batching with 363 SNAs required every six months.  A similar process occurs 

when reduction of fleet demand reducing the number of required pilots from 23 to 22 

with the number of SNAs reduced from 363 to 356 before stabilizing at 347.  While the 

model described below is based on accurate and stable fleet pilot demands given two 

years in advance with no changes made during the training cycle, it can be adjusted to 

account for these increases and decreases of demands. 

1. Commissioning Source 

From the projected pilot replacement rate for the fleet squadrons and known 

historical attrition rates of each of the various training stages within the undergraduate 

training program, initial number of SNAs required to enter the program to produce the 

required number of pilots at the completion of the entire program are calculated.  SNAs 

required from the commissioning source are spread over the two-year period in batches 

that occur approximately every six months corresponding to graduation dates of the 

commissioning sources.  Numbers of SNAs leaving the commissioning source for the 

undergraduate helicopter training program range from a minimum of two students 
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required per six-month batch to 427 students required per six-month batch depending on 

varying level of fleet demand ranging from zero to 27.  A composite chart depicting these 

various rates of SNAs entering the program built from the table contained in the 

Commissioning Rate worksheet.  The resultant graph is depicted in Figure 14.   

 

 

Figure 14.   Commissioning Batching 

 

2. A-Pool 

The first stage of the optimization model within the undergraduate helicopter 

program is A-Pool.  Newly designated SNAs leave the various commissioning sources in 

set batches at specific times with the number of students entering the program in 

approximate equal numbers every six months.  The number of students arriving at the 

start of the program closely matches the definition of the Economic Order Quantity 

(EOQ) as used in a production facility.  However, there are differences in that SNA 

“ordering” periods are set based on a set time schedule with ordering costs minimal.   

This stage acts as a buffer to absorb the sudden influx of these students entering 

the program and provides a steady flow of students to the IFS training stage.  Maximum 

SNA loading occurs immediately after a batch of students arrives from the 
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commissioning sources and minimum loading occurs immediately prior to the next batch 

of students arriving.  Numbers of SNAs leaving the A-Pool for the IFS training are 

relatively constant dependent on the fleet demand, which varies between zero to 27, and 

range from a minimum of 0.13 students per biweekly period to 34.16 students per 

biweekly period.  A composite chart depicting the model’s output of the load and rate of 

SNAs entering A-Pool is built from the tables contained in the A-Pool Load and A-Pool 

Rate worksheets.  The resultant graph is depicted in Figure 15. 

 

 

Figure 15.   A-Pool Load 

3. Introductory Flight Screening (IFS) 

The second stage of the optimization model is the Introductory Flight Screening 

(IFS) training stage.  SNAs enter IFS training at a relatively constant rate from A-Pool, as 

described previously.  Student loading within this stage remains consistent based 

ultimately upon fleet requirements.  The biweekly completion rate ranged from 0.12 

SNAs to 32.80 SNAs dependent on fleet demand, which varied between zero to 27 

indicating that while excess capacity was present within the stage, the model maintained 

steady flow throughout the supply-chain.  A composite chart depicting the model’s output  
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of the load and rate of SNAs entering the IFS training stage is built from the tables 

contained in the IFS Load and IFS Rate worksheets.  The resultant graph is depicted in 

Figure 16.   

 

 

Figure 16.   IFS Load 

IFS loading remain constant given various student demands.  This is expected 

within this stage and in future stages of the undergraduate training program due to the 

main objective of the optimization model in minimizing overall costs.   

4. B-Pool 

The third stage of the optimization model is B-Pool.  Students who successfully 

complete IFS training arrive at B-Pool at a consistent rate, dependent on future fleet 

demand, and are queued awaiting the start of the next stage of training, API.  Within this 

queue, SNA load remains consistent with numbers of students managed as safety stock 

designed to protect the supply-chain from variability.  Numbers of SNAs leaving B-Pool 

for API training are relatively constant dependent on fleet demand and range from a 

minimum of 0.23 students per biweekly period to 31.23 students per biweekly period.   
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B-Pool does not always need to remain constant and, and load is dependent on the 

situation, which may cause growth.  Such a case can be seen by decreasing of fleet 

demand during the two-year period while holding commissioning rates constant.  For 

example, decreasing fleet biweekly demand from 23 to 22 pilots results in an overall 

decrease in program output.  This is reflected by decreasing output among all the stages 

within the program.  With constant input, the extra SNAs not required to meet the 

reduced demand complete IFS training and are held in B-Pool while awaiting the start of 

API training.  A similar case is not seen, however, if the situation is reversed and fleet 

demand increases from 22 students to 23 students while holding commissioning rates 

constant.  In this scenario, there is no solution possible to meet fleet demand while 

keeping the overall service rate at 100%.  Therefore, changes to the model and to the 

program must be made to achieve fleet required demand. These changes may include 

reducing attrition rates through the lowering of standards to allow more students to 

graduate that would otherwise fail or to transfer SNAs assigned as part of other aviation 

training pipelines to the helicopter-training pipeline. Assuming predicted fleet demand 

remains consistent through the two-year period and commissioning rates are allowed to 

change, a composite chart of depicting the model’s output of the load and rate of SNAs 

entering the B-Pool stage is built from the tables contained in the B-Pool Load and B-

Pool Rate worksheets.  The resultant graph is depicted in Figure 17.   
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Figure 17.   B-Pool Load 

5. Aviation Preflight Indoctrination (API) 

The fourth stage of the optimization model is Aviation Preflight Indoctrination 

(API).  SNAs enter API training stage at a relatively constant rate from B-Pool, as 

described previously.  Load within this stage remains relatively constant with number of 

students entering equaling number of students departing either through attrition or 

completion.  Capacity of API, as calculated in Chapter III, is approximately 35.9 

students.  Although API has a high capacity relative to other stages within the program, 

the effects of attrition make it the system bottleneck.  However, with the addition of an 

additional stage of IFS training, this may someday shift the bottleneck earlier in the 

program.  If this bottleneck shifted to the IFS training stage, little impact is expected with 

military flight management under NASC responsible for SNA entry in all training stages 

throughout the program.  However, having a bottleneck early in the program prevents 

breaks in SNA training at later stages while still allowing managers to control the timing 

that the SNAs are produced in the future.  Because of these timing issues, maximum 

throughput is not achieved at lower levels of demand with the biweekly completion rates 

ranging from 0.12 SNAs to 30.35 dependent on fleet demand, which varies between zero  
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and 27.  A composite chart depicting the model’s output of the load and rate of SNAs 

completing API training stage is built from the tables contained in the API Load and API 

Rate worksheets.  The resultant graph is depicted in Figure 18. 

 

 

Figure 18.   API Load 

6. C-Pool 

The fifth stage of the optimization model is C-Pool.  Students who successfully 

complete API training arrive at C-Pool at a consistent rate, dependent on future fleet 

demand, and are queued awaiting the start of the next stage of training, Primary Flight 

Training.  Within this queue, SNA load remains consistent with numbers of students 

managed as safety stock designed to protect the supply-chain from variability.  This 

number of students is set by the flight manager.  Numbers of SNAs leaving C-Pool for 

the API training range from a minimum of 0.12 students per biweekly period to 30.39 

students per biweekly period depending on level of fleet demand.  A composite chart 

depicting the model’s output of the load and rate of SNAs entering C-Pool stage is built 

from the tables contained in the C-Pool Load and C-Pool Rate worksheets.  The resultant 

graph is depicted in Figure 19.   
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Figure 19.   C-Pool Load 

7. Primary Flight Training 

The sixth stage of the optimization model is Primary Flight Training.  SNAs enter 

the Primary Flight Training stage at a relatively constant rate from C-Pool, as described 

previously.  Load within this stage remains relatively constant with number of students 

entering equaling number of students departing either through attrition or completion.  

Capacity of Primary Flight Training, as calculated in Chapter III, is approximately 31.21 

students.  However, maximum throughput was never achieved.  The biweekly completion 

rate ranged from 0.10 SNAs to 27.92 SNAs dependent on fleet demand, which varies 

between zero and 27 indicating that while excess capacity was present within the stage, 

the model maintained steady flow throughout the supply-chain. 

A composite chart depicting the model’s output of the load and rate of SNAs 

completing API training stage is built from the tables contained in the Primary Load and 

Primary Rate worksheets.  The resultant graph is depicted in Figure 20.  
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Figure 20.   Primary Flight Training Load 

8. D-Pool   

The seventh stage of the optimization program is D-Pool.  Students who 

successfully complete Primary Flight Training arrive at D-Pool at a consistent rate, 

dependent on future fleet demand, and are queued awaiting the start of the next stage of 

training, Advanced Rotary Flight Training.  As with C-Pool, in this queue, within this 

queue, SNA load remains consistent with numbers of students managed as safety stock 

designed to protect the supply-chain from variability.  This number of students is set by 

the flight manager. However, as students approach the end of the undergraduate 

helicopter training program, less variability exist, therefore less student load exists within 

D-Pool.  Numbers of SNAs leaving D-Pool for the Advanced Rotary Flight Training 

range from a minimum of 0.11 students per biweekly period to 28.12 students per 

biweekly period depending on level of fleet demand.  A composite chart depicting the 

model’s output of the load and rate.  SNAs within the D-Pool stage are built from the 

tables contained in the D-Pool Load and D-Pool Rate worksheets.  The resultant graph is 

depicted in Figure 21.   
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Figure 21.   D-Pool Load 

9. Advanced Rotary Flight Training 

The eighth stage of the optimization model is the Advanced Rotary Flight 

Training.  SNAs enter the Advanced Rotary Flight Training stage at a relatively constant 

rate from D-Pool, as described previously.  Load within this stage remains relatively 

constant with number of students entering equaling number of students departing either 

through attrition or completion.  Capacity of this stage of training is calculated in Chapter 

III at approximately 31.21 students.  The model simulated biweekly completion rates 

ranging from 0.11 SNAs to 27.27 representing a range of zero to 27 pilots required on a 

biweekly basis by the fleet squadrons indicating that while excess capacity is present 

within the stage, the model maintained steady flow throughout the supply chain.  A 

composite chart depicting the model’s output of the load and rate of SNAs completing 

Advanced Rotary Flight Training stage is built from the tables contained in the Advanced 

Load and Advanced Rate worksheets.  The resultant graph is depicted in Figure 22.  

 



 
 

58

 

Figure 22.   Advanced Rotary Flight Training Load 

10. E-Pool 

The ninth and final stage of the program is E-Pool.  Students who successfully 

complete Advanced Rotary Flight Training arrive at E-Pool at a consistent rate, 

depending on future fleet demand, and are queued awaiting the winging ceremony and 

permanent change of station and transfer to the various Fleet Replacement Squadrons 

(FRS).  As with C-Pool and D-Pool, in this queue, a small number of SNAs are held as 

safety stock, protecting the supply-chain from variability.  However, at this stage, little 

variability exist, therefore, less student load exists within E-Pool as the previous queues.  

Numbers of SNAs leaving E-Pool range from a minimum of 0.11 students per biweekly 

period to 27.92 students per biweekly period depending on level of fleet demand. A 

composite chart depicting the model’s output of the load and rate of SNAs entering the E-

Pool stage is built from the tables contained in the E-Pool Load and E-Pool Rate 

worksheets.  SNAs within the E-Pool stage are built from the tables contained in the E-

Pool Load and E-Pool Rate worksheets.  The resultant graph is depicted in Figure 23.   
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Figure 23.   E-Pool Load 

11. Service Rates 

Service rate within the undergraduate helicopter-training program is defined as 

the number of pilots produced at the end of the program as a percentage of pilots 

demanded by fleet squadrons.  Within the model, as fleet demand increased from zero to 

27 pilots, capacity of the system was never exceeded.  Service rates between biweekly 

timer periods fluctuated above and below fleet demand under production in one period 

and over production in another.  However, on average, at the end of the year, the resultant 

service rate was 100% indicating fleet demand was met, as depicted in Figure 24. 

As discussed in the Commissioning Batching, changes to fleet demand within the 

two-year time period is a possibility with many unknowns affecting the system.  

Increases or decreases in fleet demand from one fiscal year to the next result in 

overproduction and underproduction of students within the two-year time period.  For 

example, increasing the number of pilots required from 22 to 23 at the end of the first 

fiscal year results in an overproduction of winged pilots during the first year followed by 

an underproduction during the second year.  A similar process occurs when reduction of  
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fleet demand reducing the number of required pilots from 23 to 22 with an 

underproduction of winged pilots produced in the first year followed by an 

overproduction in the second year. 

 

 

Figure 24.   Service Rate 

 

12. Total Variable Costs 

The main purpose of the optimization model was to minimize variable costs of the 

entire program from the start of the program at A-Pool through the end of the program at 

E-Pool.  Total variable costs ranged from a minimum of $25,804 to $7,788,234 per two-

year (i.e., 52 biweekly periods) dependent on fleet demand.  Total variable costs per 

student ranged from a minimum of $267,831, a maximum of $279,301 and an average of 

$268,495. 
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Figure 25.   Total Variable Costs 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The purpose of this study was to develop a model-based approach for generating 

an optimal training plan for mangers within the undergraduate helicopter-training 

program.  Costs, capacities and attrition rates within each stage were addressed and based 

on historical information and assumptions stages.  However, as with all models, this is 

only a simplified version of a more complex reality and is but one of many tools that 

flight managers may use.    

In the model, the optimized outcome is not the sum of the total optimized results 

of each individual stage.  If optimization of each stage were to occur, student throughput 

would be at maximum capacity for each stage to avoid incurring holding costs of 

students.  However, in each of the training stages, the capacity was not strained.  Instead, 

the model maintained steady flow of students throughout the entire system in a push-pull 

method of supply-chain management with fleet demands pulling students at completion 

of the program driving commissioning sources to push students entering the start of the 

program.   

 

 

Figure 26.   Helicopter Pilot Training Supply Chain 
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Through the use of a user defined inputs (i.e., batching, capacity, loading, and 

attrition), the model can easily be changed and the simulation rerun to determine effects 

such changes to the system would incur compared to the current baseline model prior to 

implementation of such plans.   

Model simulation tested the system from zero to 27 pilots to represent the current 

expected scale of demand from the fleet squadrons with the maximum capacity of this 

system being 30.2, as discussed in Chapter III.  IFS was identified as the bottleneck of the 

system with capacity of 34.96 resulting in the maximum demand allowable by the model 

of 30.2.  Once this limit is reached, the request for additional students without addressing 

bottleneck issues drives up costs exponentially while simultaneously driving down 

service rates.  This effect, depicted in Figure 25, illustrates the effects of increasing pilot 

demand on service rates and total variable costs and Figure 27 depicts the effects of 

increasing pilot demand on service rates and total variable costs per SNA.  

 

 

Figure 27.   Number of Pilots Vs. Total Variable Costs and Service Rates 

Results of the model baseline simulation, as described in Chapter IV, identify four 

main cost drivers:  1) Costs associated with the number of SNAs; 2) Costs for uncertainty 

of demand; 3) Costs linked with holding SNAs in the various pools; and 4) Costs linked 
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with SNAs changing duty stations from one location to another.  Each of these cost 

drivers can be analyzed to further minimize resultant costs below that of the baseline 

model. 

B. RECOMMENDATIONS 

Based on the analysis and conclusions, previously discussed, the following 

recommendations are made to improve these four areas that will save costs. 

1. Demand 

2. Variability 

3. Inventory  

4. Transfers 

Overall variable cost savings implementing reduction in these four areas are simulated 

through computational experimentation, as described in Chapter IV.  The results of these 

variable cost savings simulations as applied to the based model are depicted in Figure 28 

and are described in detail in sections one through four. 

 

 

Figure 28.   Estimated Total Variable Cost Savings 
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1. Reduce Demand 

Reduction of the number of SNAs trained, thereby reducing total overall variable 

costs, can be accomplished through two methods, reducing the attrition rates and 

reducing fleet demand. 

a. Reduce Attrition Rates 

Two methodologies that can be used to reduce attrition rates are an 

arbitrary reduction in the number of SNA attrition rate or an implementation of a more 

stringent screening process for SNA.  An arbitrary reduction in the attrition rate is a 

myopic option and is not a valid long-term option.  By allowing poorly performing SNA 

to earn their wings just to meet fleet demand will allow less than qualified pilots into the 

fleet that may later become liabilities to the fleet squadrons that receive them.  Additional 

costs that may be incurred include supplemental training requirements due to poor 

performance, maintenance cost for damage incurred due to the pilot’s negligence or the 

possible injury or death because of pilot error.  This option comes at a tradeoff of 

quantity and quality.  Historically, this method had been used in the past to meet fleet 

demands, but its use has been controversial and therefore it is not a valid option.   

The implementation of a more stringent preselection screening process is a 

much better option to reduce attrition rates.  One method to select SNA is based on the 

Aviation-Selection Test Battery (ASTB).  The ASTB is a battery of test that examines 

math skills, reading skills, mechanical comprehension, spatial apperception, aviation and 

nautical knowledge.  The primary focus of the ASTB is to evaluate the mental capability 

of the candidates.  The ASTB could combine both mental and physical tests to evaluate 

how a candidate would perform physiologically.  

In addition to using an enhanced ASTB, midshipmen attending USNA and 

other ROTC units can be screened earlier in their training to identify potential SNA 

candidates.  Midshipmen can be evaluated on the potential for aviation while on 

midshipmen cruises during the summer.  Midshipmen cruises are used to provide the 

midshipmen with an introduction into the Navy’s operational fleet.  First class cruises are 
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more focused on student’s service selection desires.  This period can be used to evaluate 

the midshipmen with training simulators and flights that already exist in the fleet to begin 

the screening process for future SNA.  Changing this parameter in the model and 

rerunning the simulation resulted in a 10.9% of total variable cost savings, as shown in 

Figure 27.  However, additional training and evaluation come with added costs, which 

increase as the attrition rates decrease.  A cost-benefit analysis is required to determine if 

this option is beneficial.   

b. Reduce Fleet Demand 

A method to reduce fleet demand without an actual decrease to the number 

of pilots in the squadron is to increase the length of tour in the squadron from the current 

36 months to either 48 or 60 months for first tour pilots.  By increasing the tour length, 

the squadrons will keep the experience of it pilots for a longer time while, and as a result, 

may reduce operational training cost and PCS costs within the Navy, as a whole. 

An example of reduced fleet demand as a result of increased tour length is 

depicted below using Little’s Law, which is explained as: the long-term average number 

of pilots in a squadron L is equal to the long-term average arrival rate, λ, multiplied by 

the long-term average time a pilot is in the squadron, W; or expressed algebraically:  

L = λW.  Where λ3 is equal to the arrival rate based on a 3-year order and λ4 is equal to 

the arrival rate based on 4-year order. 

 
L = λ * W, where L is constant 
L = λ3 * 3 years and λ4 * 4 years 
λ3* 3 years = * λ4 *4 years. 

 

Therefore, 

 
λ4 / λ3 = ¾. 
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For example, using the current baseline demand for pilots of 22 per two-

week period, we can calculate fleet demand would decrease to 16.5 if the pilot tours were 

extended to four years; additionally, five-year orders will decrease the number of pilots 

demanded to 13.2.  

 
λ4 / λ3 = 3/4 
λ4 / 22 = 3 / 4 
λ4 = 22*3/4 
λ4 = 16.5 

 

Based on model calculations, average cost per students remains relatively constant at 

approximately $268,500, regardless of the number of students in the program.  Therefore, 

the reduction in SNAs requiring training results in a cost savings of $1,476,750 within the 

undergraduate pilot training program. This becomes more evident when comparing cost 

savings if fleet tours were extended to 60-month orders.  With required number of pilots 

required reduced by 2/3 from 22 pilots to that of 13.2 results in overall variable cost 

savings of $2,362,800.  This option, however, is shortsighted due to its potential impact 

on other billets that need to be filled by the first tour pilots leaving their operational 

squadrons.  Additionally traditional career paths will have to be adjusted due to the 

decrease in possible billets that are available to be filled.  A cost-benefit analysis is 

required to determine if this option is beneficial.   

2. Reduce Variability 

Reduction of the variability of the system can be accomplished through reducing 

batch sizes and increasing the ordering of students entering the program from the various 

commissioning sources.  Utilizing just-in-time inventory through level loading practices 

reduces the fluctuations in student loads of A-Pool as SNAs wait to enter the IFS training 

stage, as shown in Figure 29. 
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Figure 29.   Student Pool Loads 

This level loading practice can be accomplished through a form of delayed entry 

program already implemented by the Navy in other high cost training programs such 

enlisted boot camp.  In this delayed entry program, the SNA’s first set of official orders 

would include a specific start date for IFS training to begin.  This option may have larger 

impacts in the Navy if coupled with use of a delayed commissioning process.  With 

known specific start dates, time spent prior to beginning aviation training may be spent 

on other goals, such as continuing graduate education.  Through this level loading, all 

other variables remaining constant, SNA loading in A-Pool can be reduced to zero 

resulting in a reduction of the average wait time of students from 46 weeks to 22 weeks.  

This results in a 52% reduction of total nontraining wait time of SNAs within the 

program.  Changing this parameter in the model and rerunning the simulation resulted in 

a 5.9% of total variable cost savings, as shown in Figure 27.   

3. Reduce Inventory 

Reduction in the variability of the system has an added benefit in allowing flight 

managers to reduce inventory held as safety stock, thereby, reducing total program 

holding costs.  Safety stock is maintained in various pools within the system to buffer 
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against both over and under production between each individual stage within the program 

and against increases and decreases in demand from outside of the program.  From 

operations management, adequate safety stock can be calculated using the following 

equation: 

 

Safety Stock = z*(μL*σD
2 + μD

2*σL
2)1/2 

 

Variables used in this equation are as follows. 

z  Required service rate calculated as NORMSINV(Service Rate) 

μL Average Lead Time 

μD Average Demand 

σL Standard Deviation of Lead Time 

σD Standard Deviation of Demand 

 

Required service rates are set by military planners and are dependent on the 

acceptable amount of risk.  Average lead time varies between stages with commissioning 

sources providing SNAs to the program every 6 months (i.e., 13 periods), IFS and API 

providing students to B-Pool and C-Pool every one week (i.e., .5 periods), and Primary 

Flight Training and Advanced Rotary Flight Training providing SNAs to D-Pool and E-

Pool every two weeks (i.e., one period).  Average demand for each stage is dependent on 

fleet demand at the end of the program, taking into account attrition rates of each stage.  

Standard deviation of lead time accounts for uncertainty of SNAs not completing a 

training stage at the predetermined set time due to delays from weather, medical, 

academics, and maintenance.  Delays are also influenced on length of the training stage in 

which the SNA is participating (i.e., longer training stages incur more chances of 

experience delays than do shorter stages).  Assuming variability of delays are the same 

regardless of the reason, approximate values of the standard deviation of lead time can be 

determined.  Finally, standard deviation of demand is given based on calculations as 

described in Chapter III.  
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Using these description of variables, safety stock for each pool using the baseline 

model can be calculated. 

 
StockA-Pool = z *(13* 0.52 + 02 * μD

2)1/2 = z * (3.25 + 0 * μD
2)1/2 = z * 1.80 

StockB-Pool = z *(.5* 0.52 +.532 * μD
2)1/2 = z * (.125 + .28 * μD

2)1/2 

StockC-Pool = z *(.5* 0.52 +.232 * μD
2)1/2 = z * (.125 + .05 * μD

2)1/2 

StockD-Pool = z *(1* 0.52 + .622 * μD
2)1/2 = z * (.25 + .38 * μD

2)1/2 

StockE-Pool = z *(1* 0.52 + .642 * μD
2)1/2 = z * (.25 + .41 * μD

2)1/2 

 

For example,  for an average fleet demand of 22 students using attrition rates for as 

discussed in Chapter III, safety stock of the various pools are calculated with typical 

service rates, as depicted in Table 10. 

 

Table 10.   Safety Stock Example (μD = 22) 

75% 80% 85% 90% 95% 100%

A‐Pool 0.24 0.30 0.37 0.45 0.58 2.81

B‐Pool 9.19 11.47 14.12 17.46 22.41 108.20

C‐Pool 3.90 4.87 6.00 7.41 9.52 45.95

D‐Pool 9.54 11.90 14.66 18.13 23.27 112.33

E‐Pool 9.51 11.87 14.61 18.07 23.19 111.96

Service Rate

 
 

Baseline model annual service rates program completion was approximately 

100%, however, within the year, biweekly service rates were 97.5 percent.  All other 

variables remaining constant, model outputs indicate that implementation of this COA 

would introduce a small safety stock to A-Pool thus increasing the level from zero to 3.5.  

Safety stock for B-Pool would be increased from zero to 23.0.  Safety Stock for C-Pool 

would be reduced from 74.0 to a new value of 10.1.  Safety stock for D-Pool would be 

reduced from 45.4 to a new value of 26.9.  Finally, safety stock for E-Pool would be 

increased from 22.0 to a new level of 27.6.  This results in a 48% reduction of overall  
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numbers of SNAs waiting in the Pools within the program.  Changing this parameter in 

the model and rerunning the simulation resulted in a 6.0% of total variable cost savings, 

as shown in Figure 28.   

4. Reduce Transfers 

Reduction of total transfer costs can be accomplished through the reduction or 

elimination of PCS moves between various stages of the program.  These moves occur 

during the transition between API at NAS Pensacola and Primary Flight Training at NAS 

Corpus Christi, as well as between Primary Flight Training at NAS Corpus Christi and 

Advanced Rotary Flight Training at NAS Whiting Field. To eliminate costs for these PCS 

moves, student helicopter pilots must be selected no later than the completion of API 

training.  If implemented, SNAs selected for helicopter training would incur no PCS 

costs, with Primary Flight Training conducted at NAS Whiting Field.  

This type of program is already in use by the surface warfare community with 

newly commissioned officers receiving first set of orders to type of ship they will first 

serve aboard within the fleet.  Tailoring such a program towards the aviation community 

would involve matching students with platforms during orders from the various 

commissioning sources prior to entry into the aviation-training program. However, 

implementation of this program may have negative effects resulting in increased attrition 

rates later in the process.  Therefore, as previously discussed with reducing attrition rates, 

this risk must be mitigated through a more stringent preselection process to augment or 

replace the current ASTB currently used.  If such a program were to be implemented, it 

would result in a cost savings of 100% of transfer costs of the undergraduate helicopter-

training program and have similar benefits of other training pipelines.  Changing this 

parameter in the model and rerunning the simulation resulted in a 3.4% of total variable 

cost savings, as shown in Figure 27.   
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C. SUGGESTIONS FOR FUTURE RESEARCH 

The modeling approach and simulation of the undergraduate helicopter-training 

program reveals possible potential future research topics.  Further research is required to 

be conducted to validate the previous recommendations to include the following. 

1. Refine the model to account for variations of variables that increase 
students time to train (i.e., weather, medical and maintenance) 

2. Increase the scope of model to include pilot training flow through the 
completion of the FRS and final delivery of qualified pilots to the fleet 
squadrons. 

3. Develop a test of batteries to augment or replace ASTB that provides a 
more thorough and holistic (i.e., mental, medical and physical) screening 
of perspective SNAs prior to selection in order to reduce attrition rates 
within the aviation training program and allow for the  initiation of an 
early platform selection process. 

4. Conduct a cost-benefit analysis of selecting an aviation platform early and 
tailoring certain phases of training to reflect selection (i.e., if selected 
helicopter, then do not need aerobatics). 

5. Conduct a cost-benefit analysis of increasing the length of fleet tours from 
36 months to 48 or 60 months. 
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APPENDIX A.  HOLDING COST CALCULATIONS 

Table 11.   Holding Costs Computation 

Holding Costs 
(NAS Pensacola / NAS Whiting Field) 

Daily Costs    
(O–1) 

Daily Costs    
(O–2) 

Base Pay $90 $118

Basic Allowance for Subsistence (BAS) $7 $7

Basic Allowance for Housing (BAH) $34 $34

Fly Pay* $4 $4

Retired Pay Accrual $30 $40

Medicare-Eligible Retiree Health Care Accrual $25 $25

Totals* $190 $230

      

Holding Costs 
(NAS Corpus Christi) 

Daily Costs    
(O–1) 

Daily Costs    
(O–2) 

Base Pay $90 $118

Basic Allowance for Subsistence (BAS) $7 $7

Basic Allowance for Housing (BAH) $48 $48 

Fly Pay* $4 $4

Retired Pay Accrual $30 $40

Medicare-Eligible Retiree Health Care Accrual $25 $25

Totals* $204 $242

      

*Note:  SNA fly pay starts during primary stage of training   
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APPENDIX B.  HELICOPTER TRAINING PROGRAM SYLLABI 

A. INTRODUCTORY FLIGHT SCREENING (IFS) 

Table 12.   Introductory Flight Screening (IFS) Syllabus (From Chief of Naval Air 
Training (CNATRA) Instruction 3501.1B Introductory Flight Screening 
(IFS) Program) 

Syllabus Events 
Event Remarks 

Ground Preflight Flight Time Postflight 

Flight Equipment Issue           
Ground Stage 1   10.00       

            

Ground Stage 2   10.00       

Flight 1     0.50 0.50 0.50 

Flight 2     0.50 1.00 0.50 

Flight 3     0.50 1.25 0.50 

Flight 4     0.50 1.25 0.50 

Flight 5     0.50 1.25 0.50 

Flight 6     0.50 1.25 0.50 

Flight 7     0.50 1.25 0.50 

Flight 8     0.50 1.25 0.50 

Flight 10 Check Flight   0.50 1.50 0.50 

Flight 9 Solo   0.50 1.00 0.50 
            

Ground Stage 3   10.00       

Flight 11     0.50 1.25 0.50 

Flight 12 Solo   0.50 0.50 0.50 

Flight 13 Solo   0.50 1.00 0.50

Flight 14     0.50 1.25 0.50

Flight 15     0.50 1.25 0.50

Flight 16 Night   0.50 1.25 0.50

Flight 17 X-Country   0.50 1.75 0.50

Flight 18 Night X-Country   0.50 1.75 0.50

Flight 20 Check Flight   0.50 1.75 0.50

Flight 19 X-Country Solo   0.50 1.75 0.50

    30.00 10.00 25.00 10.00
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B. PRIMARY FLIGHT TRAINING 

Table 13.   Primary Flight Training Syllabus (From Chief of Naval Air Training 
(CNATRA) Instruction 1542.140D; Primary Multi-Service Pilot Training 
System Curriculum) 

T-34C 
CPT SIM 

Dual Solo 
Flight / Events 

Flts Hrs Flts Hrs Flts Hrs Flts Hrs 

Cockpit Procedure 5 6.5             

Day Contact         16 29.2 4 6.9

Day Contact Check         1 2.0     

Night Contact         2 3.0     

Basic Instruments     7 9.1 3 4.5     

Radio Instruments     9 11.7 5 9.0     

Instrument Navigation     10 13.0 4 8.0     

Instrument Check         1 2.0     

Day Navigation         2 3.2     

Night Navigation         2 3.2     

Basic Formation         5 10.5 1 1.5

Cruise Formation         3 6.0     

Totals 5 6.5 26 33.8 44 80.6 5 8.4
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C. ADVANCED ROTARY FLIGHT TRAINING 

Table 14.   Advanced Rotary Flight Syllabus (From Chief of Naval Air Training 
(CNATRA) Instruction 1542.156B; Advanced Helicopter MPTS 
Curriculum) 

TH-57B/C 
CPT SIM 

Dual Solo Flight / Events 

Flts Hrs Flts Hrs Flts Hrs Flts Hrs 

Procedures Trainer 5 6.5             
Contact ‘B’         13 22.5 1 1
Contact ‘B’ Safe-for-Solo Check Ride         1 1.2     
Contact ‘C’     1 1.3 4 6.0     
Contact ‘C’ Safe-for-Solo Check Ride         1 1.2     
Night Contact ‘C’         2 3.0     
Basic Instruments     5 6.5 6 10.2     
Basics Instruments Check Ride         1 1.5     
Emergency Procedures     2 2.6         
Radio Instruments     18 23.4 8 15.2     
Airways Navigation     2 2.6         
Instrument Navigation         4 8.0 1 2
Instrument “Safe for Solo” Check Ride         1 1.8     
Day Navigation         3 5.1 1 1.7
Night Navigation         1 1.7     
Low-Level Navigation         5 7.5     
Formation         3 6.0     
Combat Cruise Formation         1 1.8     
Day Tactical         3 4.5     
Shipboard/SAR     2 2.6 3 2.5     

Night Vision Device     1 1.3 5 8.5     

Totals 5 6.5 31 40.3 65 108.2 3 4.7
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APPENDIX C.  OPTIMIZATION MODEL EXAMPLE OUTPUT  

Appendix C contains a sample of the output charts produced by the optimization model based on a mean fleet demand 

of 22 pilots. 
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